File size: 2,083 Bytes
e7bf80e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
792fcf4
 
 
 
 
e7bf80e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
792fcf4
e7bf80e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_keras_callback
model-index:
- name: khadija69/xlmRobertaLarge_BIES_stem_1K_1
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# khadija69/xlmRobertaLarge_BIES_stem_1K_1

This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.9865
- Train Accuracy: 0.5197
- Validation Loss: 0.9333
- Validation Accuracy: 0.5236
- Epoch: 1

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1300, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 500, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 1.4567     | 0.3846         | 1.0687          | 0.4869              | 0     |
| 0.9865     | 0.5197         | 0.9333          | 0.5236              | 1     |


### Framework versions

- Transformers 4.42.3
- TensorFlow 2.15.0
- Datasets 2.20.0
- Tokenizers 0.19.1