khaled5321 commited on
Commit
5f38708
1 Parent(s): 4380fd2

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.99 +/- 0.61
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c8c58e9aa8fb9dc1773efbc16f525a8acbd3680d512da82bdcff27a2d123f8a
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f59671c5940>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f59671c3510>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1675080496684809613,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8ZroPiEhkLqLpRI/8ZroPiEhkLqLpRI/8ZroPiEhkLqLpRI/8ZroPiEhkLqLpRI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0zKYP7D7xT7vTBU/I8CcPzBFj78CJr2/u4TSP7dhAL/AzNI/R64fPuYrIL/OqtY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADxmug+ISGQuoulEj8BimU7qwmPulih7brxmug+ISGQuoulEj8BimU7qwmPulih7brxmug+ISGQuoulEj8BimU7qwmPulih7brxmug+ISGQuoulEj8BimU7qwmPulih7bqUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.4543071 -0.00109962 0.5728385 ]\n [ 0.4543071 -0.00109962 0.5728385 ]\n [ 0.4543071 -0.00109962 0.5728385 ]\n [ 0.4543071 -0.00109962 0.5728385 ]]",
60
+ "desired_goal": "[[ 1.189051 0.38668585 0.58320516]\n [ 1.2246135 -1.1192989 -1.4777224 ]\n [ 1.6446756 -0.501491 1.6468735 ]\n [ 0.15593825 -0.62566984 0.4192719 ]]",
61
+ "observation": "[[ 0.4543071 -0.00109962 0.5728385 0.00350249 -0.00109129 -0.00181297]\n [ 0.4543071 -0.00109962 0.5728385 0.00350249 -0.00109129 -0.00181297]\n [ 0.4543071 -0.00109962 0.5728385 0.00350249 -0.00109129 -0.00181297]\n [ 0.4543071 -0.00109962 0.5728385 0.00350249 -0.00109129 -0.00181297]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEz8hPfownj0Y9Co+yLSevd9sDj4X8l8+fAqGvTjmvb3+1TM+IlgXvm05Ab5HGDA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.03936679 0.07724185 0.16694677]\n [-0.07749325 0.13908719 0.21869694]\n [-0.06544968 -0.09272426 0.175621 ]\n [-0.14779714 -0.12619562 0.17196761]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIg1K0ci9w+7+UhpRSlIwBbJRLMowBdJRHQKR9qf8Muvl1fZQoaAZoCWgPQwhRg2kYPmL9v5SGlFKUaBVLMmgWR0CkfWv7WNFSdX2UKGgGaAloD0MI1bSLaaZ7/7+UhpRSlGgVSzJoFkdApH0v7Hhjv3V9lChoBmgJaA9DCKXap+Mxg/y/lIaUUpRoFUsyaBZHQKR88wt8NQV1fZQoaAZoCWgPQwjHnj2XqUkCwJSGlFKUaBVLMmgWR0CkfqE4NqgzdX2UKGgGaAloD0MIMILGTKIe/7+UhpRSlGgVSzJoFkdApH5jhUBGQXV9lChoBmgJaA9DCJpeYizTr/y/lIaUUpRoFUsyaBZHQKR+J37k4m11fZQoaAZoCWgPQwgMAiuHFnkAwJSGlFKUaBVLMmgWR0Ckfep2ll9SdX2UKGgGaAloD0MI5zV2ieoNBMCUhpRSlGgVSzJoFkdApH+TySV4YHV9lChoBmgJaA9DCGPxm8JKpQbAlIaUUpRoFUsyaBZHQKR/VgmZ3LV1fZQoaAZoCWgPQwiUvhBy3j//v5SGlFKUaBVLMmgWR0CkfxoCEHt4dX2UKGgGaAloD0MITPvm/uqxAsCUhpRSlGgVSzJoFkdApH7dH4Glh3V9lChoBmgJaA9DCOYIGcizKwPAlIaUUpRoFUsyaBZHQKSAkViWmgt1fZQoaAZoCWgPQwgd44qLo7L+v5SGlFKUaBVLMmgWR0CkgFOLaVUudX2UKGgGaAloD0MIwAZEiCtnB8CUhpRSlGgVSzJoFkdApIAX2VVxTHV9lChoBmgJaA9DCOvJ/KNvUgbAlIaUUpRoFUsyaBZHQKR/2/xlQMx1fZQoaAZoCWgPQwgxtaUO8joKwJSGlFKUaBVLMmgWR0CkgY4msvIwdX2UKGgGaAloD0MIX9IYraOq/b+UhpRSlGgVSzJoFkdApIFQaef7JnV9lChoBmgJaA9DCDKvIw7ZgAfAlIaUUpRoFUsyaBZHQKSBFLmp2ll1fZQoaAZoCWgPQwhgksoUc5AEwJSGlFKUaBVLMmgWR0CkgNgWBSUDdX2UKGgGaAloD0MIptO6DWpfAMCUhpRSlGgVSzJoFkdApIKKT4cm0HV9lChoBmgJaA9DCEijAifbwADAlIaUUpRoFUsyaBZHQKSCTHbRF7V1fZQoaAZoCWgPQwitbB/ylqv/v5SGlFKUaBVLMmgWR0CkghBY/3WXdX2UKGgGaAloD0MImgrxSLz897+UhpRSlGgVSzJoFkdApIHTdSEUTXV9lChoBmgJaA9DCNHq5AzFvQTAlIaUUpRoFUsyaBZHQKSDfz7uUll1fZQoaAZoCWgPQwiyuP/IdMgBwJSGlFKUaBVLMmgWR0Ckg0Fa8pTddX2UKGgGaAloD0MI+wJ64c7FAsCUhpRSlGgVSzJoFkdApIMFQhwEQ3V9lChoBmgJaA9DCBtjJ7wEJwXAlIaUUpRoFUsyaBZHQKSCyEdNnGt1fZQoaAZoCWgPQwhTeqaXGAv9v5SGlFKUaBVLMmgWR0CkhHdOqNp/dX2UKGgGaAloD0MItAOuK2ZEA8CUhpRSlGgVSzJoFkdApIQ5/kNnXnV9lChoBmgJaA9DCBGPxMvTuQTAlIaUUpRoFUsyaBZHQKSD/jMmnfl1fZQoaAZoCWgPQwhbmfBL/TwGwJSGlFKUaBVLMmgWR0Ckg8GSQo1DdX2UKGgGaAloD0MIoTAo02iyBsCUhpRSlGgVSzJoFkdApIVwLVnVXnV9lChoBmgJaA9DCDnVWpiF9vy/lIaUUpRoFUsyaBZHQKSFMkVvddp1fZQoaAZoCWgPQwixa3u7JRkAwJSGlFKUaBVLMmgWR0CkhPYyO7xvdX2UKGgGaAloD0MIVObmG9FdA8CUhpRSlGgVSzJoFkdApIS5XKbKBHV9lChoBmgJaA9DCIxNK4VAbgTAlIaUUpRoFUsyaBZHQKSGVbNbC791fZQoaAZoCWgPQwgplltaDUn6v5SGlFKUaBVLMmgWR0Ckhhe+23KCdX2UKGgGaAloD0MIJ6H0hZAzBMCUhpRSlGgVSzJoFkdApIXbzbvgFXV9lChoBmgJaA9DCA+dnndjgQHAlIaUUpRoFUsyaBZHQKSFnuKGcnV1fZQoaAZoCWgPQwhKlpNQ+uILwJSGlFKUaBVLMmgWR0Ckhz1fNRm9dX2UKGgGaAloD0MI3gN0X85sAMCUhpRSlGgVSzJoFkdApIb/eWOZLXV9lChoBmgJaA9DCBGq1OyBtgTAlIaUUpRoFUsyaBZHQKSGw6WgOBl1fZQoaAZoCWgPQwhwP+CBAcQAwJSGlFKUaBVLMmgWR0CkhoaWX1J2dX2UKGgGaAloD0MItFVJZB+k97+UhpRSlGgVSzJoFkdApIgmxGDtgXV9lChoBmgJaA9DCO2ePCzUmgTAlIaUUpRoFUsyaBZHQKSH6SmqHXV1fZQoaAZoCWgPQwiBsFOsGkT7v5SGlFKUaBVLMmgWR0Ckh6021lXjdX2UKGgGaAloD0MIw33k1qSb/b+UhpRSlGgVSzJoFkdApIdwaP0ZnHV9lChoBmgJaA9DCM3Ji0zA7/6/lIaUUpRoFUsyaBZHQKSJFB+F10V1fZQoaAZoCWgPQwjLnZlgOLcHwJSGlFKUaBVLMmgWR0CkiNZUkv9MdX2UKGgGaAloD0MIPxwkRPlC+r+UhpRSlGgVSzJoFkdApIiaTEBKc3V9lChoBmgJaA9DCJSI8C+Cxv+/lIaUUpRoFUsyaBZHQKSIXS9du511fZQoaAZoCWgPQwgC8E+pEgUCwJSGlFKUaBVLMmgWR0Ckifwb2lEadX2UKGgGaAloD0MIoBaDh2l/A8CUhpRSlGgVSzJoFkdApIm+WUr08XV9lChoBmgJaA9DCIB+37958f6/lIaUUpRoFUsyaBZHQKSJgmWt2cJ1fZQoaAZoCWgPQwgQk3AhjyD/v5SGlFKUaBVLMmgWR0CkiUVL8JlbdX2UKGgGaAloD0MI0CaHTzqR+b+UhpRSlGgVSzJoFkdApIrof8uSOnV9lChoBmgJaA9DCFjH8UOlEQjAlIaUUpRoFUsyaBZHQKSKqpda+vh1fZQoaAZoCWgPQwjjw+xl2yn+v5SGlFKUaBVLMmgWR0Ckim58BuGcdX2UKGgGaAloD0MIzZTW3xKA+L+UhpRSlGgVSzJoFkdApIoxdhRZU3V9lChoBmgJaA9DCMwHBDqTdvm/lIaUUpRoFUsyaBZHQKSL2OzY2891fZQoaAZoCWgPQwiQn41cN4UQwJSGlFKUaBVLMmgWR0Cki5sT37DVdX2UKGgGaAloD0MIO4pz1NExAcCUhpRSlGgVSzJoFkdApItfUjLSu3V9lChoBmgJaA9DCKM/NPPk+gPAlIaUUpRoFUsyaBZHQKSLInLJSzh1fZQoaAZoCWgPQwjVk/lH3yT8v5SGlFKUaBVLMmgWR0CkjMgFX7tRdX2UKGgGaAloD0MITb7Z5sa0BMCUhpRSlGgVSzJoFkdApIyKEWZZ0XV9lChoBmgJaA9DCJXXSuguqQHAlIaUUpRoFUsyaBZHQKSMTj7Q9id1fZQoaAZoCWgPQwiQEyaMZiUBwJSGlFKUaBVLMmgWR0CkjBFTvRZ2dX2UKGgGaAloD0MIJLiRskVSAcCUhpRSlGgVSzJoFkdApI2x5X2du3V9lChoBmgJaA9DCOZXc4BgjgDAlIaUUpRoFUsyaBZHQKSNdAhStNl1fZQoaAZoCWgPQwg/VYUGYtn6v5SGlFKUaBVLMmgWR0CkjTf9pAUtdX2UKGgGaAloD0MIzjgNUYXfAcCUhpRSlGgVSzJoFkdApIz7MaCL/HV9lChoBmgJaA9DCNqOqbuyywLAlIaUUpRoFUsyaBZHQKSOs8Fpwjt1fZQoaAZoCWgPQwi9p3LaU1IDwJSGlFKUaBVLMmgWR0CkjnXRG+bmdX2UKGgGaAloD0MIr1sExvrmAsCUhpRSlGgVSzJoFkdApI458rqdH3V9lChoBmgJaA9DCESmfAiqhv+/lIaUUpRoFUsyaBZHQKSN/S6UaAF1fZQoaAZoCWgPQwiR71LqkhECwJSGlFKUaBVLMmgWR0Ckj6LHdXT3dX2UKGgGaAloD0MIHAjJAiawCsCUhpRSlGgVSzJoFkdApI9k5fdAPnV9lChoBmgJaA9DCF/v/nivWgXAlIaUUpRoFUsyaBZHQKSPKOWjXWh1fZQoaAZoCWgPQwhxrIvbaKAAwJSGlFKUaBVLMmgWR0CkjuvRJEpidX2UKGgGaAloD0MICacFL/rqAcCUhpRSlGgVSzJoFkdApJCasQumJnV9lChoBmgJaA9DCFwdAHFXDwHAlIaUUpRoFUsyaBZHQKSQXOtW+491fZQoaAZoCWgPQwjUR+APPz/6v5SGlFKUaBVLMmgWR0CkkCD/lyR0dX2UKGgGaAloD0MIlEvjF16pBMCUhpRSlGgVSzJoFkdApI/kGmk30nV9lChoBmgJaA9DCM1bdR2q6QPAlIaUUpRoFUsyaBZHQKSRpdznzQN1fZQoaAZoCWgPQwhXdyy2SSUCwJSGlFKUaBVLMmgWR0CkkWhBRhttdX2UKGgGaAloD0MI4qsdxTkq+7+UhpRSlGgVSzJoFkdApJEsWhysCHV9lChoBmgJaA9DCDxKJTyhNwjAlIaUUpRoFUsyaBZHQKSQ7336AOJ1fZQoaAZoCWgPQwitwfuqXCgDwJSGlFKUaBVLMmgWR0Ckkrc+iaiLdX2UKGgGaAloD0MIf6SIDKu4+r+UhpRSlGgVSzJoFkdApJJ5gmZ3LXV9lChoBmgJaA9DCCjVPh2PWQLAlIaUUpRoFUsyaBZHQKSSPb7CSA91fZQoaAZoCWgPQwh1IOup1RcHwJSGlFKUaBVLMmgWR0CkkgEaMrEtdX2UKGgGaAloD0MIpUqUvaWcCMCUhpRSlGgVSzJoFkdApJOplrdnCnV9lChoBmgJaA9DCMy0/SsrjQDAlIaUUpRoFUsyaBZHQKSTbAO8TSN1fZQoaAZoCWgPQwg1071O6osAwJSGlFKUaBVLMmgWR0CkkzAa3qiXdX2UKGgGaAloD0MIYK3aNSENAsCUhpRSlGgVSzJoFkdApJLzJZGKAXV9lChoBmgJaA9DCOF/K9mx0fy/lIaUUpRoFUsyaBZHQKSUq4dZJTV1fZQoaAZoCWgPQwjiAzv+C2QCwJSGlFKUaBVLMmgWR0CklG22gFotdX2UKGgGaAloD0MIXynLEMe6/b+UhpRSlGgVSzJoFkdApJQx5xBE8nV9lChoBmgJaA9DCIHPDyOEx/q/lIaUUpRoFUsyaBZHQKST9RDTjNp1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e920c9a1cbc6234f3fdfd8a44cb55fa27af182e38df9f868a9a21930907ec28d
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:852a40da106065e9e3452ae6226ff1e6c1a6d5be2f1b26fd8e394bded4807a71
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f59671c5940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f59671c3510>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675080496684809613, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8ZroPiEhkLqLpRI/8ZroPiEhkLqLpRI/8ZroPiEhkLqLpRI/8ZroPiEhkLqLpRI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0zKYP7D7xT7vTBU/I8CcPzBFj78CJr2/u4TSP7dhAL/AzNI/R64fPuYrIL/OqtY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADxmug+ISGQuoulEj8BimU7qwmPulih7brxmug+ISGQuoulEj8BimU7qwmPulih7brxmug+ISGQuoulEj8BimU7qwmPulih7brxmug+ISGQuoulEj8BimU7qwmPulih7bqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4543071 -0.00109962 0.5728385 ]\n [ 0.4543071 -0.00109962 0.5728385 ]\n [ 0.4543071 -0.00109962 0.5728385 ]\n [ 0.4543071 -0.00109962 0.5728385 ]]", "desired_goal": "[[ 1.189051 0.38668585 0.58320516]\n [ 1.2246135 -1.1192989 -1.4777224 ]\n [ 1.6446756 -0.501491 1.6468735 ]\n [ 0.15593825 -0.62566984 0.4192719 ]]", "observation": "[[ 0.4543071 -0.00109962 0.5728385 0.00350249 -0.00109129 -0.00181297]\n [ 0.4543071 -0.00109962 0.5728385 0.00350249 -0.00109129 -0.00181297]\n [ 0.4543071 -0.00109962 0.5728385 0.00350249 -0.00109129 -0.00181297]\n [ 0.4543071 -0.00109962 0.5728385 0.00350249 -0.00109129 -0.00181297]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEz8hPfownj0Y9Co+yLSevd9sDj4X8l8+fAqGvTjmvb3+1TM+IlgXvm05Ab5HGDA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03936679 0.07724185 0.16694677]\n [-0.07749325 0.13908719 0.21869694]\n [-0.06544968 -0.09272426 0.175621 ]\n [-0.14779714 -0.12619562 0.17196761]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIg1K0ci9w+7+UhpRSlIwBbJRLMowBdJRHQKR9qf8Muvl1fZQoaAZoCWgPQwhRg2kYPmL9v5SGlFKUaBVLMmgWR0CkfWv7WNFSdX2UKGgGaAloD0MI1bSLaaZ7/7+UhpRSlGgVSzJoFkdApH0v7Hhjv3V9lChoBmgJaA9DCKXap+Mxg/y/lIaUUpRoFUsyaBZHQKR88wt8NQV1fZQoaAZoCWgPQwjHnj2XqUkCwJSGlFKUaBVLMmgWR0CkfqE4NqgzdX2UKGgGaAloD0MIMILGTKIe/7+UhpRSlGgVSzJoFkdApH5jhUBGQXV9lChoBmgJaA9DCJpeYizTr/y/lIaUUpRoFUsyaBZHQKR+J37k4m11fZQoaAZoCWgPQwgMAiuHFnkAwJSGlFKUaBVLMmgWR0Ckfep2ll9SdX2UKGgGaAloD0MI5zV2ieoNBMCUhpRSlGgVSzJoFkdApH+TySV4YHV9lChoBmgJaA9DCGPxm8JKpQbAlIaUUpRoFUsyaBZHQKR/VgmZ3LV1fZQoaAZoCWgPQwiUvhBy3j//v5SGlFKUaBVLMmgWR0CkfxoCEHt4dX2UKGgGaAloD0MITPvm/uqxAsCUhpRSlGgVSzJoFkdApH7dH4Glh3V9lChoBmgJaA9DCOYIGcizKwPAlIaUUpRoFUsyaBZHQKSAkViWmgt1fZQoaAZoCWgPQwgd44qLo7L+v5SGlFKUaBVLMmgWR0CkgFOLaVUudX2UKGgGaAloD0MIwAZEiCtnB8CUhpRSlGgVSzJoFkdApIAX2VVxTHV9lChoBmgJaA9DCOvJ/KNvUgbAlIaUUpRoFUsyaBZHQKR/2/xlQMx1fZQoaAZoCWgPQwgxtaUO8joKwJSGlFKUaBVLMmgWR0CkgY4msvIwdX2UKGgGaAloD0MIX9IYraOq/b+UhpRSlGgVSzJoFkdApIFQaef7JnV9lChoBmgJaA9DCDKvIw7ZgAfAlIaUUpRoFUsyaBZHQKSBFLmp2ll1fZQoaAZoCWgPQwhgksoUc5AEwJSGlFKUaBVLMmgWR0CkgNgWBSUDdX2UKGgGaAloD0MIptO6DWpfAMCUhpRSlGgVSzJoFkdApIKKT4cm0HV9lChoBmgJaA9DCEijAifbwADAlIaUUpRoFUsyaBZHQKSCTHbRF7V1fZQoaAZoCWgPQwitbB/ylqv/v5SGlFKUaBVLMmgWR0CkghBY/3WXdX2UKGgGaAloD0MImgrxSLz897+UhpRSlGgVSzJoFkdApIHTdSEUTXV9lChoBmgJaA9DCNHq5AzFvQTAlIaUUpRoFUsyaBZHQKSDfz7uUll1fZQoaAZoCWgPQwiyuP/IdMgBwJSGlFKUaBVLMmgWR0Ckg0Fa8pTddX2UKGgGaAloD0MI+wJ64c7FAsCUhpRSlGgVSzJoFkdApIMFQhwEQ3V9lChoBmgJaA9DCBtjJ7wEJwXAlIaUUpRoFUsyaBZHQKSCyEdNnGt1fZQoaAZoCWgPQwhTeqaXGAv9v5SGlFKUaBVLMmgWR0CkhHdOqNp/dX2UKGgGaAloD0MItAOuK2ZEA8CUhpRSlGgVSzJoFkdApIQ5/kNnXnV9lChoBmgJaA9DCBGPxMvTuQTAlIaUUpRoFUsyaBZHQKSD/jMmnfl1fZQoaAZoCWgPQwhbmfBL/TwGwJSGlFKUaBVLMmgWR0Ckg8GSQo1DdX2UKGgGaAloD0MIoTAo02iyBsCUhpRSlGgVSzJoFkdApIVwLVnVXnV9lChoBmgJaA9DCDnVWpiF9vy/lIaUUpRoFUsyaBZHQKSFMkVvddp1fZQoaAZoCWgPQwixa3u7JRkAwJSGlFKUaBVLMmgWR0CkhPYyO7xvdX2UKGgGaAloD0MIVObmG9FdA8CUhpRSlGgVSzJoFkdApIS5XKbKBHV9lChoBmgJaA9DCIxNK4VAbgTAlIaUUpRoFUsyaBZHQKSGVbNbC791fZQoaAZoCWgPQwgplltaDUn6v5SGlFKUaBVLMmgWR0Ckhhe+23KCdX2UKGgGaAloD0MIJ6H0hZAzBMCUhpRSlGgVSzJoFkdApIXbzbvgFXV9lChoBmgJaA9DCA+dnndjgQHAlIaUUpRoFUsyaBZHQKSFnuKGcnV1fZQoaAZoCWgPQwhKlpNQ+uILwJSGlFKUaBVLMmgWR0Ckhz1fNRm9dX2UKGgGaAloD0MI3gN0X85sAMCUhpRSlGgVSzJoFkdApIb/eWOZLXV9lChoBmgJaA9DCBGq1OyBtgTAlIaUUpRoFUsyaBZHQKSGw6WgOBl1fZQoaAZoCWgPQwhwP+CBAcQAwJSGlFKUaBVLMmgWR0CkhoaWX1J2dX2UKGgGaAloD0MItFVJZB+k97+UhpRSlGgVSzJoFkdApIgmxGDtgXV9lChoBmgJaA9DCO2ePCzUmgTAlIaUUpRoFUsyaBZHQKSH6SmqHXV1fZQoaAZoCWgPQwiBsFOsGkT7v5SGlFKUaBVLMmgWR0Ckh6021lXjdX2UKGgGaAloD0MIw33k1qSb/b+UhpRSlGgVSzJoFkdApIdwaP0ZnHV9lChoBmgJaA9DCM3Ji0zA7/6/lIaUUpRoFUsyaBZHQKSJFB+F10V1fZQoaAZoCWgPQwjLnZlgOLcHwJSGlFKUaBVLMmgWR0CkiNZUkv9MdX2UKGgGaAloD0MIPxwkRPlC+r+UhpRSlGgVSzJoFkdApIiaTEBKc3V9lChoBmgJaA9DCJSI8C+Cxv+/lIaUUpRoFUsyaBZHQKSIXS9du511fZQoaAZoCWgPQwgC8E+pEgUCwJSGlFKUaBVLMmgWR0Ckifwb2lEadX2UKGgGaAloD0MIoBaDh2l/A8CUhpRSlGgVSzJoFkdApIm+WUr08XV9lChoBmgJaA9DCIB+37958f6/lIaUUpRoFUsyaBZHQKSJgmWt2cJ1fZQoaAZoCWgPQwgQk3AhjyD/v5SGlFKUaBVLMmgWR0CkiUVL8JlbdX2UKGgGaAloD0MI0CaHTzqR+b+UhpRSlGgVSzJoFkdApIrof8uSOnV9lChoBmgJaA9DCFjH8UOlEQjAlIaUUpRoFUsyaBZHQKSKqpda+vh1fZQoaAZoCWgPQwjjw+xl2yn+v5SGlFKUaBVLMmgWR0Ckim58BuGcdX2UKGgGaAloD0MIzZTW3xKA+L+UhpRSlGgVSzJoFkdApIoxdhRZU3V9lChoBmgJaA9DCMwHBDqTdvm/lIaUUpRoFUsyaBZHQKSL2OzY2891fZQoaAZoCWgPQwiQn41cN4UQwJSGlFKUaBVLMmgWR0Cki5sT37DVdX2UKGgGaAloD0MIO4pz1NExAcCUhpRSlGgVSzJoFkdApItfUjLSu3V9lChoBmgJaA9DCKM/NPPk+gPAlIaUUpRoFUsyaBZHQKSLInLJSzh1fZQoaAZoCWgPQwjVk/lH3yT8v5SGlFKUaBVLMmgWR0CkjMgFX7tRdX2UKGgGaAloD0MITb7Z5sa0BMCUhpRSlGgVSzJoFkdApIyKEWZZ0XV9lChoBmgJaA9DCJXXSuguqQHAlIaUUpRoFUsyaBZHQKSMTj7Q9id1fZQoaAZoCWgPQwiQEyaMZiUBwJSGlFKUaBVLMmgWR0CkjBFTvRZ2dX2UKGgGaAloD0MIJLiRskVSAcCUhpRSlGgVSzJoFkdApI2x5X2du3V9lChoBmgJaA9DCOZXc4BgjgDAlIaUUpRoFUsyaBZHQKSNdAhStNl1fZQoaAZoCWgPQwg/VYUGYtn6v5SGlFKUaBVLMmgWR0CkjTf9pAUtdX2UKGgGaAloD0MIzjgNUYXfAcCUhpRSlGgVSzJoFkdApIz7MaCL/HV9lChoBmgJaA9DCNqOqbuyywLAlIaUUpRoFUsyaBZHQKSOs8Fpwjt1fZQoaAZoCWgPQwi9p3LaU1IDwJSGlFKUaBVLMmgWR0CkjnXRG+bmdX2UKGgGaAloD0MIr1sExvrmAsCUhpRSlGgVSzJoFkdApI458rqdH3V9lChoBmgJaA9DCESmfAiqhv+/lIaUUpRoFUsyaBZHQKSN/S6UaAF1fZQoaAZoCWgPQwiR71LqkhECwJSGlFKUaBVLMmgWR0Ckj6LHdXT3dX2UKGgGaAloD0MIHAjJAiawCsCUhpRSlGgVSzJoFkdApI9k5fdAPnV9lChoBmgJaA9DCF/v/nivWgXAlIaUUpRoFUsyaBZHQKSPKOWjXWh1fZQoaAZoCWgPQwhxrIvbaKAAwJSGlFKUaBVLMmgWR0CkjuvRJEpidX2UKGgGaAloD0MICacFL/rqAcCUhpRSlGgVSzJoFkdApJCasQumJnV9lChoBmgJaA9DCFwdAHFXDwHAlIaUUpRoFUsyaBZHQKSQXOtW+491fZQoaAZoCWgPQwjUR+APPz/6v5SGlFKUaBVLMmgWR0CkkCD/lyR0dX2UKGgGaAloD0MIlEvjF16pBMCUhpRSlGgVSzJoFkdApI/kGmk30nV9lChoBmgJaA9DCM1bdR2q6QPAlIaUUpRoFUsyaBZHQKSRpdznzQN1fZQoaAZoCWgPQwhXdyy2SSUCwJSGlFKUaBVLMmgWR0CkkWhBRhttdX2UKGgGaAloD0MI4qsdxTkq+7+UhpRSlGgVSzJoFkdApJEsWhysCHV9lChoBmgJaA9DCDxKJTyhNwjAlIaUUpRoFUsyaBZHQKSQ7336AOJ1fZQoaAZoCWgPQwitwfuqXCgDwJSGlFKUaBVLMmgWR0Ckkrc+iaiLdX2UKGgGaAloD0MIf6SIDKu4+r+UhpRSlGgVSzJoFkdApJJ5gmZ3LXV9lChoBmgJaA9DCCjVPh2PWQLAlIaUUpRoFUsyaBZHQKSSPb7CSA91fZQoaAZoCWgPQwh1IOup1RcHwJSGlFKUaBVLMmgWR0CkkgEaMrEtdX2UKGgGaAloD0MIpUqUvaWcCMCUhpRSlGgVSzJoFkdApJOplrdnCnV9lChoBmgJaA9DCMy0/SsrjQDAlIaUUpRoFUsyaBZHQKSTbAO8TSN1fZQoaAZoCWgPQwg1071O6osAwJSGlFKUaBVLMmgWR0CkkzAa3qiXdX2UKGgGaAloD0MIYK3aNSENAsCUhpRSlGgVSzJoFkdApJLzJZGKAXV9lChoBmgJaA9DCOF/K9mx0fy/lIaUUpRoFUsyaBZHQKSUq4dZJTV1fZQoaAZoCWgPQwjiAzv+C2QCwJSGlFKUaBVLMmgWR0CklG22gFotdX2UKGgGaAloD0MIXynLEMe6/b+UhpRSlGgVSzJoFkdApJQx5xBE8nV9lChoBmgJaA9DCIHPDyOEx/q/lIaUUpRoFUsyaBZHQKST9RDTjNp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (596 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.9931541037280112, "std_reward": 0.607866657051757, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-30T12:52:09.288363"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26e982d67cbd862e9899a631133d42e5812cd0293756151b8c104850ff529369
3
+ size 3056