File size: 6,486 Bytes
9f20adc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
tags:
- generated_from_trainer
model-index:
- name: roberta-base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-base

This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2676
- Law Precision: 0.8739
- Law Recall: 0.9065
- Law F1: 0.8899
- Law Number: 107
- Violated by Precision: 0.8254
- Violated by Recall: 0.7324
- Violated by F1: 0.7761
- Violated by Number: 71
- Violated on Precision: 0.5077
- Violated on Recall: 0.5156
- Violated on F1: 0.5116
- Violated on Number: 64
- Violation Precision: 0.6460
- Violation Recall: 0.6979
- Violation F1: 0.6710
- Violation Number: 374
- Overall Precision: 0.6890
- Overall Recall: 0.7192
- Overall F1: 0.7037
- Overall Accuracy: 0.9504

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Law Precision | Law Recall | Law F1 | Law Number | Violated by Precision | Violated by Recall | Violated by F1 | Violated by Number | Violated on Precision | Violated on Recall | Violated on F1 | Violated on Number | Violation Precision | Violation Recall | Violation F1 | Violation Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------:|:----------:|:------:|:----------:|:---------------------:|:------------------:|:--------------:|:------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| No log        | 1.0   | 85   | 0.7040          | 0.0           | 0.0        | 0.0    | 107        | 0.0                   | 0.0                | 0.0            | 71                 | 0.0                   | 0.0                | 0.0            | 64                 | 0.0                 | 0.0              | 0.0          | 374              | 0.0               | 0.0            | 0.0        | 0.7707           |
| No log        | 2.0   | 170  | 0.3668          | 0.0           | 0.0        | 0.0    | 107        | 0.0                   | 0.0                | 0.0            | 71                 | 0.0                   | 0.0                | 0.0            | 64                 | 0.2416              | 0.2888           | 0.2631       | 374              | 0.2416            | 0.1753         | 0.2032     | 0.8896           |
| No log        | 3.0   | 255  | 0.2618          | 0.3077        | 0.1869     | 0.2326 | 107        | 0.0                   | 0.0                | 0.0            | 71                 | 0.0                   | 0.0                | 0.0            | 64                 | 0.4626              | 0.5455           | 0.5006       | 374              | 0.4427            | 0.3636         | 0.3993     | 0.9171           |
| No log        | 4.0   | 340  | 0.2232          | 0.7091        | 0.7290     | 0.7189 | 107        | 0.5316                | 0.5915             | 0.56           | 71                 | 0.3523                | 0.4844             | 0.4079         | 64                 | 0.5011              | 0.6016           | 0.5468       | 374              | 0.5179            | 0.6104         | 0.5604     | 0.9328           |
| No log        | 5.0   | 425  | 0.1929          | 0.7778        | 0.8505     | 0.8125 | 107        | 0.84                  | 0.5915             | 0.6942         | 71                 | 0.44                  | 0.5156             | 0.4748         | 64                 | 0.5043              | 0.6257           | 0.5585       | 374              | 0.5666            | 0.6494         | 0.6051     | 0.9440           |
| 0.489         | 6.0   | 510  | 0.2214          | 0.7227        | 0.8037     | 0.7611 | 107        | 0.7538                | 0.6901             | 0.7206         | 71                 | 0.4203                | 0.4531             | 0.4361         | 64                 | 0.5683              | 0.6337           | 0.5992       | 374              | 0.5985            | 0.6510         | 0.6236     | 0.9447           |
| 0.489         | 7.0   | 595  | 0.2452          | 0.8598        | 0.8598     | 0.8598 | 107        | 0.7759                | 0.6338             | 0.6977         | 71                 | 0.4853                | 0.5156             | 0.5            | 64                 | 0.6460              | 0.6684           | 0.6570       | 374              | 0.6774            | 0.6818         | 0.6796     | 0.9469           |
| 0.489         | 8.0   | 680  | 0.2409          | 0.9245        | 0.9159     | 0.9202 | 107        | 0.7625                | 0.8592             | 0.8079         | 71                 | 0.4321                | 0.5469             | 0.4828         | 64                 | 0.6614              | 0.6738           | 0.6675       | 374              | 0.6883            | 0.7240         | 0.7057     | 0.9485           |
| 0.489         | 9.0   | 765  | 0.2760          | 0.8739        | 0.9065     | 0.8899 | 107        | 0.8529                | 0.8169             | 0.8345         | 71                 | 0.5                   | 0.5312             | 0.5152         | 64                 | 0.6014              | 0.6898           | 0.6426       | 374              | 0.6612            | 0.7256         | 0.6920     | 0.9473           |
| 0.489         | 10.0  | 850  | 0.2676          | 0.8739        | 0.9065     | 0.8899 | 107        | 0.8254                | 0.7324             | 0.7761         | 71                 | 0.5077                | 0.5156             | 0.5116         | 64                 | 0.6460              | 0.6979           | 0.6710       | 374              | 0.6890            | 0.7192         | 0.7037     | 0.9504           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1