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1. Model Overview

ChemSolubilityBERTa is a machine-learning model prototype designed to predict the
aqueous solubility of chemical compounds from their SMILES representations. Based on
ChemBERTa, a BERT-like transformer-based architecture, ChemBERTa pre-trained on 77M
SMILES strings for molecular property prediction. We adapted ChemBERTa to predict
solubility values by fine-tuning ChemBERTa with the ESOL (Estimated SOLubility) dataset, a
water solubility prediction dataset of 1,128 samples. A user inputs a SMILES string, and the
model outputs a log solubility value (log mol/L).

2. Motivation

Accurately predicting aqueous solubility would help overcome molecular engineering
bottlenecks in the design of drugs, agrochemicals and materials by accelerating molecular
discovery, design and optimization, enabling the virtual screening of thousands of
compounds, reducing costly, time-consuming physical experiments.

3. Problem

Predicting solubility is technically challenging because of the number of predictor variables.
Each high-level variable's determinant properties drive inherent nonlinear interactions within
them. Combined with the nonlinear interactions and interdependencies between variables,
this makes predictive modelling challenging.

Physics-based models are constrained by the large number of physicochemical
interactions, e.g., intermolecular forces, thermodynamics and quantum effects, which
translates into 1) computational expense, the computational power and time needed to
model these voluminous interactions, 2) scaling limitations when dealing with complex
molecular structures or large datasets and 3) paradoxically insufficient data. While empirical
models, e.g., QSPR (Quantitative Structure-Property Relationship) or multiple linear
regression (MLR) are constrained by the validity of assumptions in describing how
molecules behave in solute.

MLR assumes linear relationships between predictor variables and solubility, and QSPR
assumes correlations between molecular structures and pre-identified molecular
descriptors to predict solubility. In other words, human assumptions guide empirical
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models, approximating relationships seen in the data by fitting observed data to predefined
equations, assumptions which are thought sufficient to explain solubility. However, reducing
the number of predictors and simplifying assumptions to reduce model complexity doesn’t
translate into predictive accuracy because nonlinearity and complex interdependent
relationships characterise solubility.

Some of the main high-level variables are molecular structure, intermolecular forces,
temperature and pH and solid-state properties. Small changes in one variable can
drastically alter another variable, affecting solvent-solute interactions, e.g., temperature can
affect the molecular structure’s conformations.

Similarly, small changes within a variable affect behaviour, e.g., changing functional groups
in molecular structure, would inevitably cascade and affect other variables through their
interdependent interactions. Nonlinear interconnected dependencies characterise the
complexity of predictive aqueous solubility modelling. In other words, the challenge is
predicting solubility from predictor variables nearly simultaneously, encapsulating their
nonlinear interdependent cascading behaviours, which phenomenologically characterise
aqueous solubility.

4. Solution

We construct deep learning neural networks to learn complex patterns from nonlinear data
to predict solubility, prediction guided by the data and not by human assumptions. We treat
ChemBERTa as a chemical foundation model and fine-tune it to predict aqueous solubility.
Fine-tuning ChemBERTa allows the model to retain its ability to generalise molecular
property prediction while specialising it to predict solubility values.

5. Methods

5.1 Model architecture

ChemSolubilityBERTa derives from ChemBERTa, based on the BERT (Bidirectional Encoder
Representations from Transformers) architecture. ChemBERTa predicts molecular properties
from SMILES strings.

5.2 Fine-tuning dataset

We fine-tuned the pre-trained ChemBERTa by training it on the ESOL water solubility
dataset of 1,128 compounds with measured solubility values (log mol/L), compounds
encoded as SMILES strings. During fine-tuning, the model’s weights adapt to the solubility
prediction task by minimising the loss between the predicted and actual solubility values.
Fine-tuning enables the model to learn solubility nuances while leveraging its molecular
understanding gained during pre-training.



5.3 Tokenizer

The ChemBERTa tokenizer transforms the ESOL SMILES strings into numerical
representations.

5.4 Training

We trained ChemSolubilityBERTa for 3 epochs with a batch size of 16, 80% training and
20% testing. Fine-tuning involved adjusting the model’s internal weights to minimise the
difference between the predicted solubility values and the actual solubility values in the
dataset.

5.5 Bvaluation

Solubility prediction is treated as a regression task, where the model outputs a continuous
value representing the predicted solubility (log mol/L). We evaluated the model’s prediction
accuracy on the test set using mean absolute error (MAE) and R-squared metrics.

6. Results

ChemSolubilityBERTa's initial results are promising. A relatively even spread above and
below the regression line suggests the model does not have systematic bias.
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Figure 1: Comparing actual solubility values of compounds from the test dataset with the
solubility values predicted by the ChemSolubilityBERTa model. Each blue dot corresponds
to a single compound in the test dataset.



MAE and R? Across Epochs
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Figure 2: Comparing MAE and R? across epochs, plotted on different y-axes.

MAE decreases as training progresses, indicating the model's predictions get closer to the
actual solubility values. R? increases with training, indicating that the model explains more
variance in the data as training progresses. Further work is needed to evaluate potential
limitations; predictions may not be as accurate for molecules significantly different from
those in the ESOL dataset.

7. Future Work

ChemSolubilityBERTa is a prototype informing our research on Al molecular programming
and engineering of molecular complex systems. Future prototyping will incorporate other
datasets and expand the ChemSolubilityBERTa model capabilities.
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