Delete model
Browse files- model/1_Pooling/config.json +0 -10
- model/README.md +0 -351
- model/config.json +0 -29
- model/config_sentence_transformers.json +0 -10
- model/model.safetensors +0 -3
- model/modules.json +0 -14
- model/sentence_bert_config.json +0 -4
- model/sentencepiece.bpe.model +0 -3
- model/special_tokens_map.json +0 -51
- model/tokenizer.json +0 -3
- model/tokenizer_config.json +0 -61
model/1_Pooling/config.json
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"word_embedding_dimension": 768,
|
3 |
-
"pooling_mode_cls_token": false,
|
4 |
-
"pooling_mode_mean_tokens": true,
|
5 |
-
"pooling_mode_max_tokens": false,
|
6 |
-
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
-
"pooling_mode_weightedmean_tokens": false,
|
8 |
-
"pooling_mode_lasttoken": false,
|
9 |
-
"include_prompt": true
|
10 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model/README.md
DELETED
@@ -1,351 +0,0 @@
|
|
1 |
-
---
|
2 |
-
language: []
|
3 |
-
library_name: sentence-transformers
|
4 |
-
tags:
|
5 |
-
- sentence-transformers
|
6 |
-
- sentence-similarity
|
7 |
-
- feature-extraction
|
8 |
-
- dataset_size:1K<n<10K
|
9 |
-
- loss:MultipleNegativesRankingLoss
|
10 |
-
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
11 |
-
widget:
|
12 |
-
- source_sentence: อยากกินของหวานที่มีรสส้ม
|
13 |
-
sentences:
|
14 |
-
- อยากกินของหวานที่มีกลิ่นส้ม
|
15 |
-
- อยากได้ของหวานที่มีมะนาวที่มีรสชาติหวาน
|
16 |
-
- แนะนำเมนูของหวานที่ใส่ผลไม้และน้ำผึ้งด้วยหน่อย
|
17 |
-
- source_sentence: อยากกินพายที่ใส่ผลไม้สด
|
18 |
-
sentences:
|
19 |
-
- อยากทานของหวานที่เป็นพายที่มีเนื้อผลไม้
|
20 |
-
- อยากกินของหวานที่มีทั้งกาแฟและช็อคโกแลต
|
21 |
-
- แนะนำเมนูมูสช็อกโกแลตที่ไม่หวานมาก
|
22 |
-
- source_sentence: อยากกินของหวานที่มีแครอท
|
23 |
-
sentences:
|
24 |
-
- ของหวานที่มีแครอทและรสหวานอมเปรี้ยวหน่อย
|
25 |
-
- อยากกินของหวานที่มีรสชาติมะม่วงและมะนาว
|
26 |
-
- อยากกินของหวานที่มีรสชาติคล้ายผลไม้
|
27 |
-
- source_sentence: อยากกินขนมอบไส้แอปเปิล
|
28 |
-
sentences:
|
29 |
-
- เมนูของหวาน อยากกินขนมอบไส้ผลไม้หวานๆ
|
30 |
-
- อยากกินของหวานสตรอว์เบอร์รี่ไม่หวานมาก
|
31 |
-
- อยากกินของหวานที่มีรสชาติหวานละมุนจากถั่ว
|
32 |
-
- source_sentence: อยากกินของหวานที่มีถั่ว
|
33 |
-
sentences:
|
34 |
-
- อยากทานของหวานที่มีส่วนผสมของถั่ว
|
35 |
-
- อยากกินพายหวานที่ผสมเครื่องเทศอบอุ่นใจ
|
36 |
-
- มีเมนูของหวานที่เป็นเชอร์เบทรสอะไรก็ได้มั้ย
|
37 |
-
pipeline_tag: sentence-similarity
|
38 |
-
---
|
39 |
-
|
40 |
-
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
41 |
-
|
42 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
43 |
-
|
44 |
-
## Model Details
|
45 |
-
|
46 |
-
### Model Description
|
47 |
-
- **Model Type:** Sentence Transformer
|
48 |
-
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 79f2382ceacceacdf38563d7c5d16b9ff8d725d6 -->
|
49 |
-
- **Maximum Sequence Length:** 128 tokens
|
50 |
-
- **Output Dimensionality:** 768 tokens
|
51 |
-
- **Similarity Function:** Cosine Similarity
|
52 |
-
<!-- - **Training Dataset:** Unknown -->
|
53 |
-
<!-- - **Language:** Unknown -->
|
54 |
-
<!-- - **License:** Unknown -->
|
55 |
-
|
56 |
-
### Model Sources
|
57 |
-
|
58 |
-
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
59 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
60 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
61 |
-
|
62 |
-
### Full Model Architecture
|
63 |
-
|
64 |
-
```
|
65 |
-
SentenceTransformer(
|
66 |
-
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
67 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
68 |
-
)
|
69 |
-
```
|
70 |
-
|
71 |
-
## Usage
|
72 |
-
|
73 |
-
### Direct Usage (Sentence Transformers)
|
74 |
-
|
75 |
-
First install the Sentence Transformers library:
|
76 |
-
|
77 |
-
```bash
|
78 |
-
pip install -U sentence-transformers
|
79 |
-
```
|
80 |
-
|
81 |
-
Then you can load this model and run inference.
|
82 |
-
```python
|
83 |
-
from sentence_transformers import SentenceTransformer
|
84 |
-
|
85 |
-
# Download from the 🤗 Hub
|
86 |
-
model = SentenceTransformer("sentence_transformers_model_id")
|
87 |
-
# Run inference
|
88 |
-
sentences = [
|
89 |
-
'อยากกินของหวานที่มีถั่ว',
|
90 |
-
'อยากทานของหวานที่มีส่วนผสมของถั่ว',
|
91 |
-
'อยากกินพายหวานที่ผสมเครื่องเทศอบอุ่นใจ',
|
92 |
-
]
|
93 |
-
embeddings = model.encode(sentences)
|
94 |
-
print(embeddings.shape)
|
95 |
-
# [3, 768]
|
96 |
-
|
97 |
-
# Get the similarity scores for the embeddings
|
98 |
-
similarities = model.similarity(embeddings, embeddings)
|
99 |
-
print(similarities.shape)
|
100 |
-
# [3, 3]
|
101 |
-
```
|
102 |
-
|
103 |
-
<!--
|
104 |
-
### Direct Usage (Transformers)
|
105 |
-
|
106 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
107 |
-
|
108 |
-
</details>
|
109 |
-
-->
|
110 |
-
|
111 |
-
<!--
|
112 |
-
### Downstream Usage (Sentence Transformers)
|
113 |
-
|
114 |
-
You can finetune this model on your own dataset.
|
115 |
-
|
116 |
-
<details><summary>Click to expand</summary>
|
117 |
-
|
118 |
-
</details>
|
119 |
-
-->
|
120 |
-
|
121 |
-
<!--
|
122 |
-
### Out-of-Scope Use
|
123 |
-
|
124 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
125 |
-
-->
|
126 |
-
|
127 |
-
<!--
|
128 |
-
## Bias, Risks and Limitations
|
129 |
-
|
130 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
131 |
-
-->
|
132 |
-
|
133 |
-
<!--
|
134 |
-
### Recommendations
|
135 |
-
|
136 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
137 |
-
-->
|
138 |
-
|
139 |
-
## Training Details
|
140 |
-
|
141 |
-
### Training Dataset
|
142 |
-
|
143 |
-
#### Unnamed Dataset
|
144 |
-
|
145 |
-
|
146 |
-
* Size: 3,175 training samples
|
147 |
-
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
148 |
-
* Approximate statistics based on the first 1000 samples:
|
149 |
-
| | sentence_0 | sentence_1 | label |
|
150 |
-
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
151 |
-
| type | string | string | float |
|
152 |
-
| details | <ul><li>min: 2 tokens</li><li>mean: 15.46 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 30.21 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
|
153 |
-
* Samples:
|
154 |
-
| sentence_0 | sentence_1 | label |
|
155 |
-
|:---------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|:-----------------|
|
156 |
-
| <code>อยากกินขนมที่ทำจากช็อกโกแลตและรสชาติเหมือนกาแฟ</code> | <code>เมนูของหวาน เมนู Mocha มีวัตถุดิบช็อกโกแลต</code> | <code>1.0</code> |
|
157 |
-
| <code>อยากกินของหวานที่มีรสพีชและมีถั่วด้วย</code> | <code>เมนูของหวาน เมนู Peach Praline Semifreddo with Amaretti มีวัตถุดิบอัลมอนด์ อัลมอนด์ พีช อัลมอนด์ พีช</code> | <code>1.0</code> |
|
158 |
-
| <code>มีเมนูของหวานที่หอมละมุนทั้งกลิ่นผลไม้และเครื่องเทศมั้ย</code> | <code>เมนูของหวาน เมนู Peach-Cherry Lambic Charlotte มีวัตถุดิบเชอร์รีเชอร์รีน้ำผึ้งพีชมะนาวมะนาว</code> | <code>1.0</code> |
|
159 |
-
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
160 |
-
```json
|
161 |
-
{
|
162 |
-
"scale": 20.0,
|
163 |
-
"similarity_fct": "cos_sim"
|
164 |
-
}
|
165 |
-
```
|
166 |
-
|
167 |
-
### Training Hyperparameters
|
168 |
-
#### Non-Default Hyperparameters
|
169 |
-
|
170 |
-
- `per_device_train_batch_size`: 16
|
171 |
-
- `per_device_eval_batch_size`: 16
|
172 |
-
- `num_train_epochs`: 20
|
173 |
-
- `multi_dataset_batch_sampler`: round_robin
|
174 |
-
|
175 |
-
#### All Hyperparameters
|
176 |
-
<details><summary>Click to expand</summary>
|
177 |
-
|
178 |
-
- `overwrite_output_dir`: False
|
179 |
-
- `do_predict`: False
|
180 |
-
- `prediction_loss_only`: True
|
181 |
-
- `per_device_train_batch_size`: 16
|
182 |
-
- `per_device_eval_batch_size`: 16
|
183 |
-
- `per_gpu_train_batch_size`: None
|
184 |
-
- `per_gpu_eval_batch_size`: None
|
185 |
-
- `gradient_accumulation_steps`: 1
|
186 |
-
- `eval_accumulation_steps`: None
|
187 |
-
- `learning_rate`: 5e-05
|
188 |
-
- `weight_decay`: 0.0
|
189 |
-
- `adam_beta1`: 0.9
|
190 |
-
- `adam_beta2`: 0.999
|
191 |
-
- `adam_epsilon`: 1e-08
|
192 |
-
- `max_grad_norm`: 1
|
193 |
-
- `num_train_epochs`: 20
|
194 |
-
- `max_steps`: -1
|
195 |
-
- `lr_scheduler_type`: linear
|
196 |
-
- `lr_scheduler_kwargs`: {}
|
197 |
-
- `warmup_ratio`: 0.0
|
198 |
-
- `warmup_steps`: 0
|
199 |
-
- `log_level`: passive
|
200 |
-
- `log_level_replica`: warning
|
201 |
-
- `log_on_each_node`: True
|
202 |
-
- `logging_nan_inf_filter`: True
|
203 |
-
- `save_safetensors`: True
|
204 |
-
- `save_on_each_node`: False
|
205 |
-
- `save_only_model`: False
|
206 |
-
- `no_cuda`: False
|
207 |
-
- `use_cpu`: False
|
208 |
-
- `use_mps_device`: False
|
209 |
-
- `seed`: 42
|
210 |
-
- `data_seed`: None
|
211 |
-
- `jit_mode_eval`: False
|
212 |
-
- `use_ipex`: False
|
213 |
-
- `bf16`: False
|
214 |
-
- `fp16`: False
|
215 |
-
- `fp16_opt_level`: O1
|
216 |
-
- `half_precision_backend`: auto
|
217 |
-
- `bf16_full_eval`: False
|
218 |
-
- `fp16_full_eval`: False
|
219 |
-
- `tf32`: None
|
220 |
-
- `local_rank`: 0
|
221 |
-
- `ddp_backend`: None
|
222 |
-
- `tpu_num_cores`: None
|
223 |
-
- `tpu_metrics_debug`: False
|
224 |
-
- `debug`: []
|
225 |
-
- `dataloader_drop_last`: False
|
226 |
-
- `dataloader_num_workers`: 0
|
227 |
-
- `dataloader_prefetch_factor`: None
|
228 |
-
- `past_index`: -1
|
229 |
-
- `disable_tqdm`: False
|
230 |
-
- `remove_unused_columns`: True
|
231 |
-
- `label_names`: None
|
232 |
-
- `load_best_model_at_end`: False
|
233 |
-
- `ignore_data_skip`: False
|
234 |
-
- `fsdp`: []
|
235 |
-
- `fsdp_min_num_params`: 0
|
236 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
237 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
238 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
|
239 |
-
- `deepspeed`: None
|
240 |
-
- `label_smoothing_factor`: 0.0
|
241 |
-
- `optim`: adamw_torch
|
242 |
-
- `optim_args`: None
|
243 |
-
- `adafactor`: False
|
244 |
-
- `group_by_length`: False
|
245 |
-
- `length_column_name`: length
|
246 |
-
- `ddp_find_unused_parameters`: None
|
247 |
-
- `ddp_bucket_cap_mb`: None
|
248 |
-
- `ddp_broadcast_buffers`: False
|
249 |
-
- `dataloader_pin_memory`: True
|
250 |
-
- `dataloader_persistent_workers`: False
|
251 |
-
- `skip_memory_metrics`: True
|
252 |
-
- `use_legacy_prediction_loop`: False
|
253 |
-
- `push_to_hub`: False
|
254 |
-
- `resume_from_checkpoint`: None
|
255 |
-
- `hub_model_id`: None
|
256 |
-
- `hub_strategy`: every_save
|
257 |
-
- `hub_private_repo`: False
|
258 |
-
- `hub_always_push`: False
|
259 |
-
- `gradient_checkpointing`: False
|
260 |
-
- `gradient_checkpointing_kwargs`: None
|
261 |
-
- `include_inputs_for_metrics`: False
|
262 |
-
- `fp16_backend`: auto
|
263 |
-
- `push_to_hub_model_id`: None
|
264 |
-
- `push_to_hub_organization`: None
|
265 |
-
- `mp_parameters`:
|
266 |
-
- `auto_find_batch_size`: False
|
267 |
-
- `full_determinism`: False
|
268 |
-
- `torchdynamo`: None
|
269 |
-
- `ray_scope`: last
|
270 |
-
- `ddp_timeout`: 1800
|
271 |
-
- `torch_compile`: False
|
272 |
-
- `torch_compile_backend`: None
|
273 |
-
- `torch_compile_mode`: None
|
274 |
-
- `dispatch_batches`: None
|
275 |
-
- `split_batches`: None
|
276 |
-
- `include_tokens_per_second`: False
|
277 |
-
- `include_num_input_tokens_seen`: False
|
278 |
-
- `neftune_noise_alpha`: None
|
279 |
-
- `optim_target_modules`: None
|
280 |
-
- `batch_sampler`: batch_sampler
|
281 |
-
- `multi_dataset_batch_sampler`: round_robin
|
282 |
-
|
283 |
-
</details>
|
284 |
-
|
285 |
-
### Training Logs
|
286 |
-
| Epoch | Step | Training Loss |
|
287 |
-
|:-------:|:----:|:-------------:|
|
288 |
-
| 2.5126 | 500 | 1.2242 |
|
289 |
-
| 5.0251 | 1000 | 0.4793 |
|
290 |
-
| 7.5377 | 1500 | 0.1693 |
|
291 |
-
| 10.0503 | 2000 | 0.0658 |
|
292 |
-
| 12.5628 | 2500 | 0.025 |
|
293 |
-
| 15.0754 | 3000 | 0.0107 |
|
294 |
-
| 17.5879 | 3500 | 0.0051 |
|
295 |
-
|
296 |
-
|
297 |
-
### Framework Versions
|
298 |
-
- Python: 3.10.13
|
299 |
-
- Sentence Transformers: 3.0.0
|
300 |
-
- Transformers: 4.39.3
|
301 |
-
- PyTorch: 2.1.2
|
302 |
-
- Accelerate: 0.29.3
|
303 |
-
- Datasets: 2.18.0
|
304 |
-
- Tokenizers: 0.15.2
|
305 |
-
|
306 |
-
## Citation
|
307 |
-
|
308 |
-
### BibTeX
|
309 |
-
|
310 |
-
#### Sentence Transformers
|
311 |
-
```bibtex
|
312 |
-
@inproceedings{reimers-2019-sentence-bert,
|
313 |
-
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
314 |
-
author = "Reimers, Nils and Gurevych, Iryna",
|
315 |
-
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
316 |
-
month = "11",
|
317 |
-
year = "2019",
|
318 |
-
publisher = "Association for Computational Linguistics",
|
319 |
-
url = "https://arxiv.org/abs/1908.10084",
|
320 |
-
}
|
321 |
-
```
|
322 |
-
|
323 |
-
#### MultipleNegativesRankingLoss
|
324 |
-
```bibtex
|
325 |
-
@misc{henderson2017efficient,
|
326 |
-
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
327 |
-
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
328 |
-
year={2017},
|
329 |
-
eprint={1705.00652},
|
330 |
-
archivePrefix={arXiv},
|
331 |
-
primaryClass={cs.CL}
|
332 |
-
}
|
333 |
-
```
|
334 |
-
|
335 |
-
<!--
|
336 |
-
## Glossary
|
337 |
-
|
338 |
-
*Clearly define terms in order to be accessible across audiences.*
|
339 |
-
-->
|
340 |
-
|
341 |
-
<!--
|
342 |
-
## Model Card Authors
|
343 |
-
|
344 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
345 |
-
-->
|
346 |
-
|
347 |
-
<!--
|
348 |
-
## Model Card Contact
|
349 |
-
|
350 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
351 |
-
-->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model/config.json
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
3 |
-
"architectures": [
|
4 |
-
"XLMRobertaModel"
|
5 |
-
],
|
6 |
-
"attention_probs_dropout_prob": 0.1,
|
7 |
-
"bos_token_id": 0,
|
8 |
-
"classifier_dropout": null,
|
9 |
-
"eos_token_id": 2,
|
10 |
-
"gradient_checkpointing": false,
|
11 |
-
"hidden_act": "gelu",
|
12 |
-
"hidden_dropout_prob": 0.1,
|
13 |
-
"hidden_size": 768,
|
14 |
-
"initializer_range": 0.02,
|
15 |
-
"intermediate_size": 3072,
|
16 |
-
"layer_norm_eps": 1e-05,
|
17 |
-
"max_position_embeddings": 514,
|
18 |
-
"model_type": "xlm-roberta",
|
19 |
-
"num_attention_heads": 12,
|
20 |
-
"num_hidden_layers": 12,
|
21 |
-
"output_past": true,
|
22 |
-
"pad_token_id": 1,
|
23 |
-
"position_embedding_type": "absolute",
|
24 |
-
"torch_dtype": "float32",
|
25 |
-
"transformers_version": "4.39.3",
|
26 |
-
"type_vocab_size": 1,
|
27 |
-
"use_cache": true,
|
28 |
-
"vocab_size": 250002
|
29 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model/config_sentence_transformers.json
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"__version__": {
|
3 |
-
"sentence_transformers": "2.0.0",
|
4 |
-
"transformers": "4.7.0",
|
5 |
-
"pytorch": "1.9.0+cu102"
|
6 |
-
},
|
7 |
-
"prompts": {},
|
8 |
-
"default_prompt_name": null,
|
9 |
-
"similarity_fn_name": null
|
10 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model/model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:43844c2e0acba4e3d57dc3fa7ec5332da73a5f306323ed856e0ee8e357e7fa74
|
3 |
-
size 1112197096
|
|
|
|
|
|
|
|
model/modules.json
DELETED
@@ -1,14 +0,0 @@
|
|
1 |
-
[
|
2 |
-
{
|
3 |
-
"idx": 0,
|
4 |
-
"name": "0",
|
5 |
-
"path": "",
|
6 |
-
"type": "sentence_transformers.models.Transformer"
|
7 |
-
},
|
8 |
-
{
|
9 |
-
"idx": 1,
|
10 |
-
"name": "1",
|
11 |
-
"path": "1_Pooling",
|
12 |
-
"type": "sentence_transformers.models.Pooling"
|
13 |
-
}
|
14 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model/sentence_bert_config.json
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"max_seq_length": 128,
|
3 |
-
"do_lower_case": false
|
4 |
-
}
|
|
|
|
|
|
|
|
|
|
model/sentencepiece.bpe.model
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
-
size 5069051
|
|
|
|
|
|
|
|
model/special_tokens_map.json
DELETED
@@ -1,51 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bos_token": {
|
3 |
-
"content": "<s>",
|
4 |
-
"lstrip": false,
|
5 |
-
"normalized": false,
|
6 |
-
"rstrip": false,
|
7 |
-
"single_word": false
|
8 |
-
},
|
9 |
-
"cls_token": {
|
10 |
-
"content": "<s>",
|
11 |
-
"lstrip": false,
|
12 |
-
"normalized": false,
|
13 |
-
"rstrip": false,
|
14 |
-
"single_word": false
|
15 |
-
},
|
16 |
-
"eos_token": {
|
17 |
-
"content": "</s>",
|
18 |
-
"lstrip": false,
|
19 |
-
"normalized": false,
|
20 |
-
"rstrip": false,
|
21 |
-
"single_word": false
|
22 |
-
},
|
23 |
-
"mask_token": {
|
24 |
-
"content": "<mask>",
|
25 |
-
"lstrip": true,
|
26 |
-
"normalized": false,
|
27 |
-
"rstrip": false,
|
28 |
-
"single_word": false
|
29 |
-
},
|
30 |
-
"pad_token": {
|
31 |
-
"content": "<pad>",
|
32 |
-
"lstrip": false,
|
33 |
-
"normalized": false,
|
34 |
-
"rstrip": false,
|
35 |
-
"single_word": false
|
36 |
-
},
|
37 |
-
"sep_token": {
|
38 |
-
"content": "</s>",
|
39 |
-
"lstrip": false,
|
40 |
-
"normalized": false,
|
41 |
-
"rstrip": false,
|
42 |
-
"single_word": false
|
43 |
-
},
|
44 |
-
"unk_token": {
|
45 |
-
"content": "<unk>",
|
46 |
-
"lstrip": false,
|
47 |
-
"normalized": false,
|
48 |
-
"rstrip": false,
|
49 |
-
"single_word": false
|
50 |
-
}
|
51 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model/tokenizer.json
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:fa685fc160bbdbab64058d4fc91b60e62d207e8dc60b9af5c002c5ab946ded00
|
3 |
-
size 17083009
|
|
|
|
|
|
|
|
model/tokenizer_config.json
DELETED
@@ -1,61 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"added_tokens_decoder": {
|
3 |
-
"0": {
|
4 |
-
"content": "<s>",
|
5 |
-
"lstrip": false,
|
6 |
-
"normalized": false,
|
7 |
-
"rstrip": false,
|
8 |
-
"single_word": false,
|
9 |
-
"special": true
|
10 |
-
},
|
11 |
-
"1": {
|
12 |
-
"content": "<pad>",
|
13 |
-
"lstrip": false,
|
14 |
-
"normalized": false,
|
15 |
-
"rstrip": false,
|
16 |
-
"single_word": false,
|
17 |
-
"special": true
|
18 |
-
},
|
19 |
-
"2": {
|
20 |
-
"content": "</s>",
|
21 |
-
"lstrip": false,
|
22 |
-
"normalized": false,
|
23 |
-
"rstrip": false,
|
24 |
-
"single_word": false,
|
25 |
-
"special": true
|
26 |
-
},
|
27 |
-
"3": {
|
28 |
-
"content": "<unk>",
|
29 |
-
"lstrip": false,
|
30 |
-
"normalized": false,
|
31 |
-
"rstrip": false,
|
32 |
-
"single_word": false,
|
33 |
-
"special": true
|
34 |
-
},
|
35 |
-
"250001": {
|
36 |
-
"content": "<mask>",
|
37 |
-
"lstrip": true,
|
38 |
-
"normalized": false,
|
39 |
-
"rstrip": false,
|
40 |
-
"single_word": false,
|
41 |
-
"special": true
|
42 |
-
}
|
43 |
-
},
|
44 |
-
"bos_token": "<s>",
|
45 |
-
"clean_up_tokenization_spaces": true,
|
46 |
-
"cls_token": "<s>",
|
47 |
-
"eos_token": "</s>",
|
48 |
-
"mask_token": "<mask>",
|
49 |
-
"max_length": 128,
|
50 |
-
"model_max_length": 128,
|
51 |
-
"pad_to_multiple_of": null,
|
52 |
-
"pad_token": "<pad>",
|
53 |
-
"pad_token_type_id": 0,
|
54 |
-
"padding_side": "right",
|
55 |
-
"sep_token": "</s>",
|
56 |
-
"stride": 0,
|
57 |
-
"tokenizer_class": "XLMRobertaTokenizer",
|
58 |
-
"truncation_side": "right",
|
59 |
-
"truncation_strategy": "longest_first",
|
60 |
-
"unk_token": "<unk>"
|
61 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|