khathathorn commited on
Commit
8e42779
·
verified ·
1 Parent(s): a813655

Delete model

Browse files
model/1_Pooling/config.json DELETED
@@ -1,10 +0,0 @@
1
- {
2
- "word_embedding_dimension": 768,
3
- "pooling_mode_cls_token": false,
4
- "pooling_mode_mean_tokens": true,
5
- "pooling_mode_max_tokens": false,
6
- "pooling_mode_mean_sqrt_len_tokens": false,
7
- "pooling_mode_weightedmean_tokens": false,
8
- "pooling_mode_lasttoken": false,
9
- "include_prompt": true
10
- }
 
 
 
 
 
 
 
 
 
 
 
model/README.md DELETED
@@ -1,351 +0,0 @@
1
- ---
2
- language: []
3
- library_name: sentence-transformers
4
- tags:
5
- - sentence-transformers
6
- - sentence-similarity
7
- - feature-extraction
8
- - dataset_size:1K<n<10K
9
- - loss:MultipleNegativesRankingLoss
10
- base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
11
- widget:
12
- - source_sentence: อยากกินของหวานที่มีรสส้ม
13
- sentences:
14
- - อยากกินของหวานที่มีกลิ่นส้ม
15
- - อยากได้ของหวานที่มีมะนาวที่มีรสชาติหวาน
16
- - แนะนำเมนูของหวานที่ใส่ผลไม้และน้ำผึ้งด้วยหน่อย
17
- - source_sentence: อยากกินพายที่ใส่ผลไม้สด
18
- sentences:
19
- - อยากทานของหวานที่เป็นพายที่มีเนื้อผลไม้
20
- - อยากกินของหวานที่มีทั้งกาแฟและช็อคโกแลต
21
- - แนะนำเมนูมูสช็อกโกแลตที่ไม่หวานมาก
22
- - source_sentence: อยากกินของหวานที่มีแครอท
23
- sentences:
24
- - ของหวานที่มีแครอทและรสหวานอมเปรี้ยวหน่อย
25
- - อยากกินของหวานที่มีรสชาติมะม่วงและมะนาว
26
- - อยากกินของหวานที่มีรสชาติคล้ายผลไม้
27
- - source_sentence: อยากกินขนมอบไส้แอปเปิล
28
- sentences:
29
- - เมนูของหวาน อยากกินขนมอบไส้ผลไม้หวานๆ
30
- - อยากกินของหวานสตรอว์เบอร์รี่ไม่หวานมาก
31
- - อยากกินของหวานที่มีรสชาติหวานละมุนจากถั่ว
32
- - source_sentence: อยากกินของหวานที่มีถั่ว
33
- sentences:
34
- - อยากทานของหวานที่มีส่วนผสมของถั่ว
35
- - อยากกินพายหวานที่ผสมเครื่องเทศอบอุ่นใจ
36
- - มีเมนูของหวานที่เป็นเชอร์เบทรสอะไรก็ได้มั้ย
37
- pipeline_tag: sentence-similarity
38
- ---
39
-
40
- # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
41
-
42
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
-
44
- ## Model Details
45
-
46
- ### Model Description
47
- - **Model Type:** Sentence Transformer
48
- - **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 79f2382ceacceacdf38563d7c5d16b9ff8d725d6 -->
49
- - **Maximum Sequence Length:** 128 tokens
50
- - **Output Dimensionality:** 768 tokens
51
- - **Similarity Function:** Cosine Similarity
52
- <!-- - **Training Dataset:** Unknown -->
53
- <!-- - **Language:** Unknown -->
54
- <!-- - **License:** Unknown -->
55
-
56
- ### Model Sources
57
-
58
- - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
- - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
- - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
-
62
- ### Full Model Architecture
63
-
64
- ```
65
- SentenceTransformer(
66
- (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
67
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
- )
69
- ```
70
-
71
- ## Usage
72
-
73
- ### Direct Usage (Sentence Transformers)
74
-
75
- First install the Sentence Transformers library:
76
-
77
- ```bash
78
- pip install -U sentence-transformers
79
- ```
80
-
81
- Then you can load this model and run inference.
82
- ```python
83
- from sentence_transformers import SentenceTransformer
84
-
85
- # Download from the 🤗 Hub
86
- model = SentenceTransformer("sentence_transformers_model_id")
87
- # Run inference
88
- sentences = [
89
- 'อยากกินของหวานที่มีถั่ว',
90
- 'อยากทานของหวานที่มีส่วนผสมของถั่ว',
91
- 'อยากกินพายหวานที่ผสมเครื่องเทศอบอุ่นใจ',
92
- ]
93
- embeddings = model.encode(sentences)
94
- print(embeddings.shape)
95
- # [3, 768]
96
-
97
- # Get the similarity scores for the embeddings
98
- similarities = model.similarity(embeddings, embeddings)
99
- print(similarities.shape)
100
- # [3, 3]
101
- ```
102
-
103
- <!--
104
- ### Direct Usage (Transformers)
105
-
106
- <details><summary>Click to see the direct usage in Transformers</summary>
107
-
108
- </details>
109
- -->
110
-
111
- <!--
112
- ### Downstream Usage (Sentence Transformers)
113
-
114
- You can finetune this model on your own dataset.
115
-
116
- <details><summary>Click to expand</summary>
117
-
118
- </details>
119
- -->
120
-
121
- <!--
122
- ### Out-of-Scope Use
123
-
124
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
125
- -->
126
-
127
- <!--
128
- ## Bias, Risks and Limitations
129
-
130
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
131
- -->
132
-
133
- <!--
134
- ### Recommendations
135
-
136
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
137
- -->
138
-
139
- ## Training Details
140
-
141
- ### Training Dataset
142
-
143
- #### Unnamed Dataset
144
-
145
-
146
- * Size: 3,175 training samples
147
- * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
148
- * Approximate statistics based on the first 1000 samples:
149
- | | sentence_0 | sentence_1 | label |
150
- |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
151
- | type | string | string | float |
152
- | details | <ul><li>min: 2 tokens</li><li>mean: 15.46 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 30.21 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
153
- * Samples:
154
- | sentence_0 | sentence_1 | label |
155
- |:---------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|:-----------------|
156
- | <code>อยากกินขนมที่ทำจากช็อกโกแลตและรสชาติเหมือนกาแฟ</code> | <code>เมนูของหวาน เมนู Mocha มีวัตถุดิบช็อกโกแลต</code> | <code>1.0</code> |
157
- | <code>อยากกินของหวานที่มีรสพีชและมีถั่วด้วย</code> | <code>เมนูของหวาน เมนู Peach Praline Semifreddo with Amaretti มีวัตถุดิบอัลมอนด์ อัลมอนด์ พีช อัลมอนด์ พีช</code> | <code>1.0</code> |
158
- | <code>มีเมนูของหวานที่หอมละมุนทั้งกลิ่นผลไม้และเครื่องเทศมั้ย</code> | <code>เมนูของหวาน เมนู Peach-Cherry Lambic Charlotte มีวัตถุดิบเชอร์รีเชอร์รีน้ำผึ้งพีชมะนาวมะนาว</code> | <code>1.0</code> |
159
- * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
160
- ```json
161
- {
162
- "scale": 20.0,
163
- "similarity_fct": "cos_sim"
164
- }
165
- ```
166
-
167
- ### Training Hyperparameters
168
- #### Non-Default Hyperparameters
169
-
170
- - `per_device_train_batch_size`: 16
171
- - `per_device_eval_batch_size`: 16
172
- - `num_train_epochs`: 20
173
- - `multi_dataset_batch_sampler`: round_robin
174
-
175
- #### All Hyperparameters
176
- <details><summary>Click to expand</summary>
177
-
178
- - `overwrite_output_dir`: False
179
- - `do_predict`: False
180
- - `prediction_loss_only`: True
181
- - `per_device_train_batch_size`: 16
182
- - `per_device_eval_batch_size`: 16
183
- - `per_gpu_train_batch_size`: None
184
- - `per_gpu_eval_batch_size`: None
185
- - `gradient_accumulation_steps`: 1
186
- - `eval_accumulation_steps`: None
187
- - `learning_rate`: 5e-05
188
- - `weight_decay`: 0.0
189
- - `adam_beta1`: 0.9
190
- - `adam_beta2`: 0.999
191
- - `adam_epsilon`: 1e-08
192
- - `max_grad_norm`: 1
193
- - `num_train_epochs`: 20
194
- - `max_steps`: -1
195
- - `lr_scheduler_type`: linear
196
- - `lr_scheduler_kwargs`: {}
197
- - `warmup_ratio`: 0.0
198
- - `warmup_steps`: 0
199
- - `log_level`: passive
200
- - `log_level_replica`: warning
201
- - `log_on_each_node`: True
202
- - `logging_nan_inf_filter`: True
203
- - `save_safetensors`: True
204
- - `save_on_each_node`: False
205
- - `save_only_model`: False
206
- - `no_cuda`: False
207
- - `use_cpu`: False
208
- - `use_mps_device`: False
209
- - `seed`: 42
210
- - `data_seed`: None
211
- - `jit_mode_eval`: False
212
- - `use_ipex`: False
213
- - `bf16`: False
214
- - `fp16`: False
215
- - `fp16_opt_level`: O1
216
- - `half_precision_backend`: auto
217
- - `bf16_full_eval`: False
218
- - `fp16_full_eval`: False
219
- - `tf32`: None
220
- - `local_rank`: 0
221
- - `ddp_backend`: None
222
- - `tpu_num_cores`: None
223
- - `tpu_metrics_debug`: False
224
- - `debug`: []
225
- - `dataloader_drop_last`: False
226
- - `dataloader_num_workers`: 0
227
- - `dataloader_prefetch_factor`: None
228
- - `past_index`: -1
229
- - `disable_tqdm`: False
230
- - `remove_unused_columns`: True
231
- - `label_names`: None
232
- - `load_best_model_at_end`: False
233
- - `ignore_data_skip`: False
234
- - `fsdp`: []
235
- - `fsdp_min_num_params`: 0
236
- - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
237
- - `fsdp_transformer_layer_cls_to_wrap`: None
238
- - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
239
- - `deepspeed`: None
240
- - `label_smoothing_factor`: 0.0
241
- - `optim`: adamw_torch
242
- - `optim_args`: None
243
- - `adafactor`: False
244
- - `group_by_length`: False
245
- - `length_column_name`: length
246
- - `ddp_find_unused_parameters`: None
247
- - `ddp_bucket_cap_mb`: None
248
- - `ddp_broadcast_buffers`: False
249
- - `dataloader_pin_memory`: True
250
- - `dataloader_persistent_workers`: False
251
- - `skip_memory_metrics`: True
252
- - `use_legacy_prediction_loop`: False
253
- - `push_to_hub`: False
254
- - `resume_from_checkpoint`: None
255
- - `hub_model_id`: None
256
- - `hub_strategy`: every_save
257
- - `hub_private_repo`: False
258
- - `hub_always_push`: False
259
- - `gradient_checkpointing`: False
260
- - `gradient_checkpointing_kwargs`: None
261
- - `include_inputs_for_metrics`: False
262
- - `fp16_backend`: auto
263
- - `push_to_hub_model_id`: None
264
- - `push_to_hub_organization`: None
265
- - `mp_parameters`:
266
- - `auto_find_batch_size`: False
267
- - `full_determinism`: False
268
- - `torchdynamo`: None
269
- - `ray_scope`: last
270
- - `ddp_timeout`: 1800
271
- - `torch_compile`: False
272
- - `torch_compile_backend`: None
273
- - `torch_compile_mode`: None
274
- - `dispatch_batches`: None
275
- - `split_batches`: None
276
- - `include_tokens_per_second`: False
277
- - `include_num_input_tokens_seen`: False
278
- - `neftune_noise_alpha`: None
279
- - `optim_target_modules`: None
280
- - `batch_sampler`: batch_sampler
281
- - `multi_dataset_batch_sampler`: round_robin
282
-
283
- </details>
284
-
285
- ### Training Logs
286
- | Epoch | Step | Training Loss |
287
- |:-------:|:----:|:-------------:|
288
- | 2.5126 | 500 | 1.2242 |
289
- | 5.0251 | 1000 | 0.4793 |
290
- | 7.5377 | 1500 | 0.1693 |
291
- | 10.0503 | 2000 | 0.0658 |
292
- | 12.5628 | 2500 | 0.025 |
293
- | 15.0754 | 3000 | 0.0107 |
294
- | 17.5879 | 3500 | 0.0051 |
295
-
296
-
297
- ### Framework Versions
298
- - Python: 3.10.13
299
- - Sentence Transformers: 3.0.0
300
- - Transformers: 4.39.3
301
- - PyTorch: 2.1.2
302
- - Accelerate: 0.29.3
303
- - Datasets: 2.18.0
304
- - Tokenizers: 0.15.2
305
-
306
- ## Citation
307
-
308
- ### BibTeX
309
-
310
- #### Sentence Transformers
311
- ```bibtex
312
- @inproceedings{reimers-2019-sentence-bert,
313
- title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
314
- author = "Reimers, Nils and Gurevych, Iryna",
315
- booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
316
- month = "11",
317
- year = "2019",
318
- publisher = "Association for Computational Linguistics",
319
- url = "https://arxiv.org/abs/1908.10084",
320
- }
321
- ```
322
-
323
- #### MultipleNegativesRankingLoss
324
- ```bibtex
325
- @misc{henderson2017efficient,
326
- title={Efficient Natural Language Response Suggestion for Smart Reply},
327
- author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
328
- year={2017},
329
- eprint={1705.00652},
330
- archivePrefix={arXiv},
331
- primaryClass={cs.CL}
332
- }
333
- ```
334
-
335
- <!--
336
- ## Glossary
337
-
338
- *Clearly define terms in order to be accessible across audiences.*
339
- -->
340
-
341
- <!--
342
- ## Model Card Authors
343
-
344
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
345
- -->
346
-
347
- <!--
348
- ## Model Card Contact
349
-
350
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
351
- -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/config.json DELETED
@@ -1,29 +0,0 @@
1
- {
2
- "_name_or_path": "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
3
- "architectures": [
4
- "XLMRobertaModel"
5
- ],
6
- "attention_probs_dropout_prob": 0.1,
7
- "bos_token_id": 0,
8
- "classifier_dropout": null,
9
- "eos_token_id": 2,
10
- "gradient_checkpointing": false,
11
- "hidden_act": "gelu",
12
- "hidden_dropout_prob": 0.1,
13
- "hidden_size": 768,
14
- "initializer_range": 0.02,
15
- "intermediate_size": 3072,
16
- "layer_norm_eps": 1e-05,
17
- "max_position_embeddings": 514,
18
- "model_type": "xlm-roberta",
19
- "num_attention_heads": 12,
20
- "num_hidden_layers": 12,
21
- "output_past": true,
22
- "pad_token_id": 1,
23
- "position_embedding_type": "absolute",
24
- "torch_dtype": "float32",
25
- "transformers_version": "4.39.3",
26
- "type_vocab_size": 1,
27
- "use_cache": true,
28
- "vocab_size": 250002
29
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/config_sentence_transformers.json DELETED
@@ -1,10 +0,0 @@
1
- {
2
- "__version__": {
3
- "sentence_transformers": "2.0.0",
4
- "transformers": "4.7.0",
5
- "pytorch": "1.9.0+cu102"
6
- },
7
- "prompts": {},
8
- "default_prompt_name": null,
9
- "similarity_fn_name": null
10
- }
 
 
 
 
 
 
 
 
 
 
 
model/model.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:43844c2e0acba4e3d57dc3fa7ec5332da73a5f306323ed856e0ee8e357e7fa74
3
- size 1112197096
 
 
 
 
model/modules.json DELETED
@@ -1,14 +0,0 @@
1
- [
2
- {
3
- "idx": 0,
4
- "name": "0",
5
- "path": "",
6
- "type": "sentence_transformers.models.Transformer"
7
- },
8
- {
9
- "idx": 1,
10
- "name": "1",
11
- "path": "1_Pooling",
12
- "type": "sentence_transformers.models.Pooling"
13
- }
14
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/sentence_bert_config.json DELETED
@@ -1,4 +0,0 @@
1
- {
2
- "max_seq_length": 128,
3
- "do_lower_case": false
4
- }
 
 
 
 
 
model/sentencepiece.bpe.model DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
- size 5069051
 
 
 
 
model/special_tokens_map.json DELETED
@@ -1,51 +0,0 @@
1
- {
2
- "bos_token": {
3
- "content": "<s>",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "cls_token": {
10
- "content": "<s>",
11
- "lstrip": false,
12
- "normalized": false,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "eos_token": {
17
- "content": "</s>",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
- "mask_token": {
24
- "content": "<mask>",
25
- "lstrip": true,
26
- "normalized": false,
27
- "rstrip": false,
28
- "single_word": false
29
- },
30
- "pad_token": {
31
- "content": "<pad>",
32
- "lstrip": false,
33
- "normalized": false,
34
- "rstrip": false,
35
- "single_word": false
36
- },
37
- "sep_token": {
38
- "content": "</s>",
39
- "lstrip": false,
40
- "normalized": false,
41
- "rstrip": false,
42
- "single_word": false
43
- },
44
- "unk_token": {
45
- "content": "<unk>",
46
- "lstrip": false,
47
- "normalized": false,
48
- "rstrip": false,
49
- "single_word": false
50
- }
51
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/tokenizer.json DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:fa685fc160bbdbab64058d4fc91b60e62d207e8dc60b9af5c002c5ab946ded00
3
- size 17083009
 
 
 
 
model/tokenizer_config.json DELETED
@@ -1,61 +0,0 @@
1
- {
2
- "added_tokens_decoder": {
3
- "0": {
4
- "content": "<s>",
5
- "lstrip": false,
6
- "normalized": false,
7
- "rstrip": false,
8
- "single_word": false,
9
- "special": true
10
- },
11
- "1": {
12
- "content": "<pad>",
13
- "lstrip": false,
14
- "normalized": false,
15
- "rstrip": false,
16
- "single_word": false,
17
- "special": true
18
- },
19
- "2": {
20
- "content": "</s>",
21
- "lstrip": false,
22
- "normalized": false,
23
- "rstrip": false,
24
- "single_word": false,
25
- "special": true
26
- },
27
- "3": {
28
- "content": "<unk>",
29
- "lstrip": false,
30
- "normalized": false,
31
- "rstrip": false,
32
- "single_word": false,
33
- "special": true
34
- },
35
- "250001": {
36
- "content": "<mask>",
37
- "lstrip": true,
38
- "normalized": false,
39
- "rstrip": false,
40
- "single_word": false,
41
- "special": true
42
- }
43
- },
44
- "bos_token": "<s>",
45
- "clean_up_tokenization_spaces": true,
46
- "cls_token": "<s>",
47
- "eos_token": "</s>",
48
- "mask_token": "<mask>",
49
- "max_length": 128,
50
- "model_max_length": 128,
51
- "pad_to_multiple_of": null,
52
- "pad_token": "<pad>",
53
- "pad_token_type_id": 0,
54
- "padding_side": "right",
55
- "sep_token": "</s>",
56
- "stride": 0,
57
- "tokenizer_class": "XLMRobertaTokenizer",
58
- "truncation_side": "right",
59
- "truncation_strategy": "longest_first",
60
- "unk_token": "<unk>"
61
- }