--- license: apache-2.0 language: en --- # The Chart-To-Table Model The Chart-To-Table model was introduced in the paper "Do LVLMs Understand Charts? Analyzing and Correcting Factual Errors in Chart Captioning" for converting a chart into a structured table. The generated tables use `&&&` to delimit rows and `|` to delimit columns. The underlying architecture of this model is UniChart. ### How to use ```python from transformers import DonutProcessor, VisionEncoderDecoderModel from PIL import Image model_name = "khhuang/chart-to-table" model = VisionEncoderDecoderModel.from_pretrained(model_name).cuda() processor = DonutProcessor.from_pretrained(model_name) image_path = "PATH_TO_IMAGE" def format_query(sentence): return f"Does the image entails this statement: \"{sentence}\"?" # Format text inputs input_prompt = " " # Encode chart figure and tokenize text img = Image.open(IMAGE_PATH) pixel_values = processor(img.convert("RGB"), random_padding=False, return_tensors="pt").pixel_values pixel_values = pixel_values.cuda() decoder_input_ids = processor.tokenizer(input_prompt, add_special_tokens=False, return_tensors="pt", max_length=510).input_ids.cuda()#.squeeze(0) outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, num_beams=4, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") extracted_table = sequence.split("")[1].strip() ``` ### Citation ``` @misc{huang-etal-2023-do, title = "Do LVLMs Understand Charts? Analyzing and Correcting Factual Errors in Chart Captioning", author = "Huang, Kung-Hsiang and Zhou, Mingyang and Chan, Hou Pong and Fung, Yi R. and Wang, Zhenhailong and Zhang, Lingyu and Chang, Shih-Fu and Ji, Heng", year={2023}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```