khleeloo commited on
Commit
0035e5a
1 Parent(s): 0f7e7ac

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: vit-base-skin
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # vit-base-skin
16
+
17
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.4524
20
+ - Accuracy: 0.8705
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0002
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 16
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 4
46
+ - mixed_precision_training: Native AMP
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 0.4987 | 1.0 | 626 | 0.5481 | 0.8031 |
53
+ | 0.3814 | 2.0 | 1252 | 0.3804 | 0.8912 |
54
+ | 0.3182 | 3.0 | 1878 | 0.3915 | 0.8653 |
55
+ | 0.067 | 4.0 | 2504 | 0.4524 | 0.8705 |
56
+
57
+
58
+ ### Framework versions
59
+
60
+ - Transformers 4.29.2
61
+ - Pytorch 1.13.1
62
+ - Datasets 2.14.5
63
+ - Tokenizers 0.13.3