khleeloo commited on
Commit
10e1454
1 Parent(s): abfa55f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -10
README.md CHANGED
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.4406
23
- - Accuracy: 0.8705
24
- - F1: 0.8724
25
- - Precision: 0.8771
26
- - Recall: 0.8705
27
 
28
  ## Model description
29
 
@@ -48,17 +48,19 @@ The following hyperparameters were used during training:
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
- - num_epochs: 4
52
  - mixed_precision_training: Native AMP
53
 
54
  ### Training results
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
- | 0.5676 | 1.0 | 626 | 0.5088 | 0.8342 | 0.8242 | 0.8626 | 0.8342 |
59
- | 0.4883 | 2.0 | 1252 | 0.4589 | 0.8446 | 0.8469 | 0.8512 | 0.8446 |
60
- | 0.3582 | 3.0 | 1878 | 0.3833 | 0.8601 | 0.8594 | 0.8740 | 0.8601 |
61
- | 0.0953 | 4.0 | 2504 | 0.4406 | 0.8705 | 0.8724 | 0.8771 | 0.8705 |
 
 
62
 
63
 
64
  ### Framework versions
 
19
 
20
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.6813
23
+ - Accuracy: 0.8497
24
+ - F1: 0.8487
25
+ - Precision: 0.8530
26
+ - Recall: 0.8497
27
 
28
  ## Model description
29
 
 
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
+ - num_epochs: 6
52
  - mixed_precision_training: Native AMP
53
 
54
  ### Training results
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
+ | 0.4952 | 1.0 | 626 | 0.5520 | 0.8083 | 0.8152 | 0.8906 | 0.8083 |
59
+ | 0.406 | 2.0 | 1252 | 0.4405 | 0.8808 | 0.8740 | 0.8807 | 0.8808 |
60
+ | 0.3248 | 3.0 | 1878 | 0.4204 | 0.8446 | 0.8349 | 0.8381 | 0.8446 |
61
+ | 0.1064 | 4.0 | 2504 | 0.6135 | 0.8446 | 0.8375 | 0.8336 | 0.8446 |
62
+ | 0.0053 | 5.0 | 3130 | 0.5843 | 0.8705 | 0.8716 | 0.8762 | 0.8705 |
63
+ | 0.0024 | 6.0 | 3756 | 0.6813 | 0.8497 | 0.8487 | 0.8530 | 0.8497 |
64
 
65
 
66
  ### Framework versions