khleeloo commited on
Commit
32567ef
1 Parent(s): 3aeb744

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -40
README.md CHANGED
@@ -19,10 +19,10 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.7363
23
  - Accuracy: 0.8549
24
- - F1: 0.8526
25
- - Precision: 0.8564
26
  - Recall: 0.8549
27
 
28
  ## Model description
@@ -55,43 +55,43 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
- | 0.8348 | 0.16 | 100 | 0.8250 | 0.6632 | 0.5926 | 0.5651 | 0.6632 |
59
- | 0.8258 | 0.32 | 200 | 0.6618 | 0.7409 | 0.6883 | 0.7368 | 0.7409 |
60
- | 0.6543 | 0.48 | 300 | 0.6107 | 0.7824 | 0.7768 | 0.7927 | 0.7824 |
61
- | 0.8157 | 0.64 | 400 | 0.5686 | 0.7720 | 0.7647 | 0.7710 | 0.7720 |
62
- | 0.6783 | 0.8 | 500 | 0.5900 | 0.8135 | 0.8049 | 0.8257 | 0.8135 |
63
- | 0.5844 | 0.96 | 600 | 0.4907 | 0.8187 | 0.8014 | 0.8252 | 0.8187 |
64
- | 0.4288 | 1.12 | 700 | 0.4793 | 0.8135 | 0.7998 | 0.8134 | 0.8135 |
65
- | 0.5126 | 1.28 | 800 | 0.4805 | 0.8342 | 0.8339 | 0.8427 | 0.8342 |
66
- | 0.4601 | 1.44 | 900 | 0.4587 | 0.8497 | 0.8407 | 0.8513 | 0.8497 |
67
- | 0.4189 | 1.6 | 1000 | 0.5410 | 0.8135 | 0.8109 | 0.8295 | 0.8135 |
68
- | 0.3752 | 1.76 | 1100 | 0.4160 | 0.8601 | 0.8551 | 0.8693 | 0.8601 |
69
- | 0.4127 | 1.92 | 1200 | 0.4465 | 0.8342 | 0.8421 | 0.8681 | 0.8342 |
70
- | 0.2633 | 2.08 | 1300 | 0.4701 | 0.8238 | 0.8204 | 0.8408 | 0.8238 |
71
- | 0.2527 | 2.24 | 1400 | 0.5074 | 0.8497 | 0.8461 | 0.8791 | 0.8497 |
72
- | 0.2699 | 2.4 | 1500 | 0.6483 | 0.7824 | 0.7678 | 0.7816 | 0.7824 |
73
- | 0.2916 | 2.56 | 1600 | 0.5031 | 0.8497 | 0.8474 | 0.8556 | 0.8497 |
74
- | 0.1639 | 2.72 | 1700 | 0.4313 | 0.8705 | 0.8714 | 0.8773 | 0.8705 |
75
- | 0.2591 | 2.88 | 1800 | 0.4407 | 0.8756 | 0.8720 | 0.8872 | 0.8756 |
76
- | 0.1511 | 3.04 | 1900 | 0.5292 | 0.8238 | 0.8185 | 0.8386 | 0.8238 |
77
- | 0.0782 | 3.19 | 2000 | 0.5992 | 0.8342 | 0.8283 | 0.8268 | 0.8342 |
78
- | 0.0706 | 3.35 | 2100 | 0.6312 | 0.8342 | 0.8211 | 0.8212 | 0.8342 |
79
- | 0.1729 | 3.51 | 2200 | 0.5898 | 0.8394 | 0.8401 | 0.8428 | 0.8394 |
80
- | 0.1356 | 3.67 | 2300 | 0.5566 | 0.8549 | 0.8534 | 0.8574 | 0.8549 |
81
- | 0.0941 | 3.83 | 2400 | 0.6472 | 0.8446 | 0.8421 | 0.8465 | 0.8446 |
82
- | 0.1733 | 3.99 | 2500 | 0.5889 | 0.8446 | 0.8407 | 0.8387 | 0.8446 |
83
- | 0.0512 | 4.15 | 2600 | 0.6857 | 0.8290 | 0.8376 | 0.8575 | 0.8290 |
84
- | 0.0329 | 4.31 | 2700 | 0.6441 | 0.8497 | 0.8518 | 0.8592 | 0.8497 |
85
- | 0.0054 | 4.47 | 2800 | 0.6683 | 0.8342 | 0.8377 | 0.8432 | 0.8342 |
86
- | 0.0252 | 4.63 | 2900 | 0.6879 | 0.8549 | 0.8565 | 0.8619 | 0.8549 |
87
- | 0.0052 | 4.79 | 3000 | 0.7232 | 0.8549 | 0.8534 | 0.8532 | 0.8549 |
88
- | 0.0245 | 4.95 | 3100 | 0.6866 | 0.8653 | 0.8628 | 0.8642 | 0.8653 |
89
- | 0.0192 | 5.11 | 3200 | 0.7032 | 0.8601 | 0.8575 | 0.8587 | 0.8601 |
90
- | 0.0401 | 5.27 | 3300 | 0.7521 | 0.8549 | 0.8539 | 0.8582 | 0.8549 |
91
- | 0.0165 | 5.43 | 3400 | 0.7557 | 0.8601 | 0.8614 | 0.8655 | 0.8601 |
92
- | 0.0283 | 5.59 | 3500 | 0.7359 | 0.8601 | 0.8587 | 0.8620 | 0.8601 |
93
- | 0.004 | 5.75 | 3600 | 0.7252 | 0.8549 | 0.8539 | 0.8541 | 0.8549 |
94
- | 0.004 | 5.91 | 3700 | 0.7363 | 0.8549 | 0.8526 | 0.8564 | 0.8549 |
95
 
96
 
97
  ### Framework versions
 
19
 
20
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.6917
23
  - Accuracy: 0.8549
24
+ - F1: 0.8552
25
+ - Precision: 0.8560
26
  - Recall: 0.8549
27
 
28
  ## Model description
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
+ | 0.9322 | 0.16 | 100 | 0.8109 | 0.6943 | 0.6290 | 0.5939 | 0.6943 |
59
+ | 0.7518 | 0.32 | 200 | 0.6722 | 0.7409 | 0.6832 | 0.6945 | 0.7409 |
60
+ | 0.6616 | 0.48 | 300 | 0.7126 | 0.7358 | 0.7077 | 0.7039 | 0.7358 |
61
+ | 0.8264 | 0.64 | 400 | 0.6001 | 0.8135 | 0.8092 | 0.8178 | 0.8135 |
62
+ | 0.5767 | 0.8 | 500 | 0.6306 | 0.7772 | 0.7619 | 0.7945 | 0.7772 |
63
+ | 0.5939 | 0.96 | 600 | 0.4621 | 0.8290 | 0.7988 | 0.8397 | 0.8290 |
64
+ | 0.4351 | 1.12 | 700 | 0.5544 | 0.7979 | 0.7894 | 0.8410 | 0.7979 |
65
+ | 0.4737 | 1.28 | 800 | 0.5151 | 0.8238 | 0.8334 | 0.8708 | 0.8238 |
66
+ | 0.428 | 1.44 | 900 | 0.4980 | 0.8238 | 0.8170 | 0.8299 | 0.8238 |
67
+ | 0.4596 | 1.6 | 1000 | 0.5650 | 0.7927 | 0.8032 | 0.8428 | 0.7927 |
68
+ | 0.4096 | 1.76 | 1100 | 0.4544 | 0.8342 | 0.8178 | 0.8567 | 0.8342 |
69
+ | 0.4328 | 1.92 | 1200 | 0.4524 | 0.8290 | 0.8294 | 0.8482 | 0.8290 |
70
+ | 0.2272 | 2.08 | 1300 | 0.4808 | 0.8290 | 0.8304 | 0.8409 | 0.8290 |
71
+ | 0.2415 | 2.24 | 1400 | 0.5585 | 0.7927 | 0.7916 | 0.8057 | 0.7927 |
72
+ | 0.2743 | 2.4 | 1500 | 0.4144 | 0.8497 | 0.8484 | 0.8497 | 0.8497 |
73
+ | 0.1943 | 2.56 | 1600 | 0.3977 | 0.8705 | 0.8722 | 0.8761 | 0.8705 |
74
+ | 0.1839 | 2.72 | 1700 | 0.4784 | 0.8394 | 0.8382 | 0.8517 | 0.8394 |
75
+ | 0.1905 | 2.88 | 1800 | 0.4314 | 0.8653 | 0.8669 | 0.8724 | 0.8653 |
76
+ | 0.111 | 3.04 | 1900 | 0.5080 | 0.8290 | 0.8309 | 0.8348 | 0.8290 |
77
+ | 0.0872 | 3.19 | 2000 | 0.5320 | 0.8549 | 0.8520 | 0.8649 | 0.8549 |
78
+ | 0.1169 | 3.35 | 2100 | 0.5110 | 0.8342 | 0.8386 | 0.8477 | 0.8342 |
79
+ | 0.1181 | 3.51 | 2200 | 0.4916 | 0.8446 | 0.8482 | 0.8563 | 0.8446 |
80
+ | 0.0879 | 3.67 | 2300 | 0.5428 | 0.8601 | 0.8657 | 0.8829 | 0.8601 |
81
+ | 0.1896 | 3.83 | 2400 | 0.5534 | 0.8497 | 0.8484 | 0.8536 | 0.8497 |
82
+ | 0.0794 | 3.99 | 2500 | 0.6542 | 0.8342 | 0.8259 | 0.8270 | 0.8342 |
83
+ | 0.0398 | 4.15 | 2600 | 0.5962 | 0.8187 | 0.8243 | 0.8338 | 0.8187 |
84
+ | 0.0512 | 4.31 | 2700 | 0.6286 | 0.8497 | 0.8447 | 0.8457 | 0.8497 |
85
+ | 0.0106 | 4.47 | 2800 | 0.6446 | 0.8394 | 0.8372 | 0.8377 | 0.8394 |
86
+ | 0.0058 | 4.63 | 2900 | 0.5754 | 0.8653 | 0.8616 | 0.8618 | 0.8653 |
87
+ | 0.0268 | 4.79 | 3000 | 0.5966 | 0.8653 | 0.8651 | 0.8658 | 0.8653 |
88
+ | 0.0146 | 4.95 | 3100 | 0.6707 | 0.8601 | 0.8535 | 0.8577 | 0.8601 |
89
+ | 0.0325 | 5.11 | 3200 | 0.6543 | 0.8549 | 0.8518 | 0.8511 | 0.8549 |
90
+ | 0.0063 | 5.27 | 3300 | 0.6780 | 0.8497 | 0.8519 | 0.8583 | 0.8497 |
91
+ | 0.003 | 5.43 | 3400 | 0.6675 | 0.8601 | 0.8577 | 0.8562 | 0.8601 |
92
+ | 0.0143 | 5.59 | 3500 | 0.6967 | 0.8601 | 0.8554 | 0.8539 | 0.8601 |
93
+ | 0.004 | 5.75 | 3600 | 0.6992 | 0.8601 | 0.8573 | 0.8552 | 0.8601 |
94
+ | 0.003 | 5.91 | 3700 | 0.6917 | 0.8549 | 0.8552 | 0.8560 | 0.8549 |
95
 
96
 
97
  ### Framework versions