--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: vit-base-skin results: [] --- # vit-base-skin This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4406 - Accuracy: 0.8705 - F1: 0.8724 - Precision: 0.8771 - Recall: 0.8705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5676 | 1.0 | 626 | 0.5088 | 0.8342 | 0.8242 | 0.8626 | 0.8342 | | 0.4883 | 2.0 | 1252 | 0.4589 | 0.8446 | 0.8469 | 0.8512 | 0.8446 | | 0.3582 | 3.0 | 1878 | 0.3833 | 0.8601 | 0.8594 | 0.8740 | 0.8601 | | 0.0953 | 4.0 | 2504 | 0.4406 | 0.8705 | 0.8724 | 0.8771 | 0.8705 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.13.1 - Datasets 2.14.5 - Tokenizers 0.13.3