vit-focal-skin / trainer_state.json
khleeloo's picture
Training in progress, epoch 1
1da7626
raw
history blame
5.13 kB
{
"best_metric": 0.8860103626943006,
"best_model_checkpoint": "./vit-focal-skin/checkpoint-1252",
"epoch": 4.0,
"global_step": 2504,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.16,
"learning_rate": 0.00019201277955271565,
"loss": 0.7905,
"step": 100
},
{
"epoch": 0.32,
"learning_rate": 0.00018402555910543132,
"loss": 0.6162,
"step": 200
},
{
"epoch": 0.48,
"learning_rate": 0.000176038338658147,
"loss": 0.5709,
"step": 300
},
{
"epoch": 0.64,
"learning_rate": 0.00016805111821086263,
"loss": 0.5101,
"step": 400
},
{
"epoch": 0.8,
"learning_rate": 0.0001600638977635783,
"loss": 0.4966,
"step": 500
},
{
"epoch": 0.96,
"learning_rate": 0.00015207667731629394,
"loss": 0.4563,
"step": 600
},
{
"epoch": 1.0,
"eval_accuracy": 0.8341968911917098,
"eval_f1": 0.8331282144797781,
"eval_loss": 0.40268635749816895,
"eval_precision": 0.8791963514680484,
"eval_recall": 0.8341968911917098,
"eval_runtime": 1.5386,
"eval_samples_per_second": 125.44,
"eval_steps_per_second": 16.249,
"step": 626
},
{
"epoch": 1.12,
"learning_rate": 0.00014408945686900958,
"loss": 0.385,
"step": 700
},
{
"epoch": 1.28,
"learning_rate": 0.00013610223642172525,
"loss": 0.3621,
"step": 800
},
{
"epoch": 1.44,
"learning_rate": 0.00012811501597444092,
"loss": 0.3624,
"step": 900
},
{
"epoch": 1.6,
"learning_rate": 0.00012012779552715656,
"loss": 0.3403,
"step": 1000
},
{
"epoch": 1.76,
"learning_rate": 0.00011214057507987221,
"loss": 0.3293,
"step": 1100
},
{
"epoch": 1.92,
"learning_rate": 0.00010415335463258787,
"loss": 0.2954,
"step": 1200
},
{
"epoch": 2.0,
"eval_accuracy": 0.8860103626943006,
"eval_f1": 0.8891954516071332,
"eval_loss": 0.3063604235649109,
"eval_precision": 0.8988400162775354,
"eval_recall": 0.8860103626943006,
"eval_runtime": 1.5206,
"eval_samples_per_second": 126.921,
"eval_steps_per_second": 16.441,
"step": 1252
},
{
"epoch": 2.08,
"learning_rate": 9.616613418530351e-05,
"loss": 0.2258,
"step": 1300
},
{
"epoch": 2.24,
"learning_rate": 8.817891373801918e-05,
"loss": 0.1583,
"step": 1400
},
{
"epoch": 2.4,
"learning_rate": 8.019169329073483e-05,
"loss": 0.1589,
"step": 1500
},
{
"epoch": 2.56,
"learning_rate": 7.220447284345049e-05,
"loss": 0.1271,
"step": 1600
},
{
"epoch": 2.72,
"learning_rate": 6.421725239616614e-05,
"loss": 0.1746,
"step": 1700
},
{
"epoch": 2.88,
"learning_rate": 5.623003194888179e-05,
"loss": 0.1118,
"step": 1800
},
{
"epoch": 3.0,
"eval_accuracy": 0.8704663212435233,
"eval_f1": 0.8663258953141536,
"eval_loss": 0.30049628019332886,
"eval_precision": 0.8698602729520133,
"eval_recall": 0.8704663212435233,
"eval_runtime": 1.4368,
"eval_samples_per_second": 134.33,
"eval_steps_per_second": 17.4,
"step": 1878
},
{
"epoch": 3.04,
"learning_rate": 4.824281150159744e-05,
"loss": 0.1193,
"step": 1900
},
{
"epoch": 3.19,
"learning_rate": 4.0255591054313104e-05,
"loss": 0.0409,
"step": 2000
},
{
"epoch": 3.35,
"learning_rate": 3.226837060702875e-05,
"loss": 0.0327,
"step": 2100
},
{
"epoch": 3.51,
"learning_rate": 2.428115015974441e-05,
"loss": 0.0357,
"step": 2200
},
{
"epoch": 3.67,
"learning_rate": 1.6293929712460065e-05,
"loss": 0.0386,
"step": 2300
},
{
"epoch": 3.83,
"learning_rate": 8.306709265175718e-06,
"loss": 0.0303,
"step": 2400
},
{
"epoch": 3.99,
"learning_rate": 3.194888178913738e-07,
"loss": 0.0317,
"step": 2500
},
{
"epoch": 4.0,
"eval_accuracy": 0.8549222797927462,
"eval_f1": 0.8560478324319817,
"eval_loss": 0.3552953004837036,
"eval_precision": 0.8595484172497833,
"eval_recall": 0.8549222797927462,
"eval_runtime": 1.5113,
"eval_samples_per_second": 127.703,
"eval_steps_per_second": 16.542,
"step": 2504
},
{
"epoch": 4.0,
"step": 2504,
"total_flos": 3.104468219559813e+18,
"train_loss": 0.2716429328141264,
"train_runtime": 832.7663,
"train_samples_per_second": 48.105,
"train_steps_per_second": 3.007
}
],
"max_steps": 2504,
"num_train_epochs": 4,
"total_flos": 3.104468219559813e+18,
"trial_name": null,
"trial_params": null
}