vit-focal-skin / trainer_state.json
khleeloo's picture
Training in progress, epoch 1
fbadca0
raw
history blame
5.13 kB
{
"best_metric": 0.8704663212435233,
"best_model_checkpoint": "./vit-focal-skin/checkpoint-1878",
"epoch": 4.0,
"global_step": 2504,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.16,
"learning_rate": 0.00019201277955271565,
"loss": 0.1663,
"step": 100
},
{
"epoch": 0.32,
"learning_rate": 0.00018402555910543132,
"loss": 0.1962,
"step": 200
},
{
"epoch": 0.48,
"learning_rate": 0.000176038338658147,
"loss": 0.1853,
"step": 300
},
{
"epoch": 0.64,
"learning_rate": 0.00016805111821086263,
"loss": 0.1706,
"step": 400
},
{
"epoch": 0.8,
"learning_rate": 0.0001600638977635783,
"loss": 0.1593,
"step": 500
},
{
"epoch": 0.96,
"learning_rate": 0.00015207667731629394,
"loss": 0.1702,
"step": 600
},
{
"epoch": 1.0,
"eval_accuracy": 0.8393782383419689,
"eval_f1": 0.8380951982999452,
"eval_loss": 0.39222732186317444,
"eval_precision": 0.857762154943502,
"eval_recall": 0.8393782383419689,
"eval_runtime": 1.5181,
"eval_samples_per_second": 127.129,
"eval_steps_per_second": 16.467,
"step": 626
},
{
"epoch": 1.12,
"learning_rate": 0.00014408945686900958,
"loss": 0.1036,
"step": 700
},
{
"epoch": 1.28,
"learning_rate": 0.00013610223642172525,
"loss": 0.0941,
"step": 800
},
{
"epoch": 1.44,
"learning_rate": 0.00012819488817891373,
"loss": 0.1029,
"step": 900
},
{
"epoch": 1.6,
"learning_rate": 0.0001202076677316294,
"loss": 0.095,
"step": 1000
},
{
"epoch": 1.76,
"learning_rate": 0.00011222044728434504,
"loss": 0.0911,
"step": 1100
},
{
"epoch": 1.92,
"learning_rate": 0.00010423322683706072,
"loss": 0.0647,
"step": 1200
},
{
"epoch": 2.0,
"eval_accuracy": 0.8238341968911918,
"eval_f1": 0.8247834676883651,
"eval_loss": 0.561523973941803,
"eval_precision": 0.8404391615022521,
"eval_recall": 0.8238341968911918,
"eval_runtime": 1.446,
"eval_samples_per_second": 133.47,
"eval_steps_per_second": 17.289,
"step": 1252
},
{
"epoch": 2.08,
"learning_rate": 9.624600638977636e-05,
"loss": 0.052,
"step": 1300
},
{
"epoch": 2.24,
"learning_rate": 8.825878594249202e-05,
"loss": 0.0298,
"step": 1400
},
{
"epoch": 2.4,
"learning_rate": 8.027156549520767e-05,
"loss": 0.0243,
"step": 1500
},
{
"epoch": 2.56,
"learning_rate": 7.228434504792333e-05,
"loss": 0.0332,
"step": 1600
},
{
"epoch": 2.72,
"learning_rate": 6.429712460063898e-05,
"loss": 0.0267,
"step": 1700
},
{
"epoch": 2.88,
"learning_rate": 5.630990415335463e-05,
"loss": 0.0111,
"step": 1800
},
{
"epoch": 3.0,
"eval_accuracy": 0.8704663212435233,
"eval_f1": 0.868408303886561,
"eval_loss": 0.4315575659275055,
"eval_precision": 0.8670271155479244,
"eval_recall": 0.8704663212435233,
"eval_runtime": 1.4834,
"eval_samples_per_second": 130.104,
"eval_steps_per_second": 16.853,
"step": 1878
},
{
"epoch": 3.04,
"learning_rate": 4.832268370607029e-05,
"loss": 0.0175,
"step": 1900
},
{
"epoch": 3.19,
"learning_rate": 4.0335463258785946e-05,
"loss": 0.0083,
"step": 2000
},
{
"epoch": 3.35,
"learning_rate": 3.23482428115016e-05,
"loss": 0.0038,
"step": 2100
},
{
"epoch": 3.51,
"learning_rate": 2.4361022364217255e-05,
"loss": 0.0009,
"step": 2200
},
{
"epoch": 3.67,
"learning_rate": 1.6373801916932906e-05,
"loss": 0.0034,
"step": 2300
},
{
"epoch": 3.83,
"learning_rate": 8.386581469648563e-06,
"loss": 0.0025,
"step": 2400
},
{
"epoch": 3.99,
"learning_rate": 3.9936102236421723e-07,
"loss": 0.0034,
"step": 2500
},
{
"epoch": 4.0,
"eval_accuracy": 0.8601036269430051,
"eval_f1": 0.8616514102008719,
"eval_loss": 0.4513249099254608,
"eval_precision": 0.8650015326151586,
"eval_recall": 0.8601036269430051,
"eval_runtime": 1.498,
"eval_samples_per_second": 128.838,
"eval_steps_per_second": 16.689,
"step": 2504
},
{
"epoch": 4.0,
"step": 2504,
"total_flos": 3.104468219559813e+18,
"train_loss": 0.0725347773061683,
"train_runtime": 849.1916,
"train_samples_per_second": 47.174,
"train_steps_per_second": 2.949
}
],
"max_steps": 2504,
"num_train_epochs": 4,
"total_flos": 3.104468219559813e+18,
"trial_name": null,
"trial_params": null
}