khleeloo commited on
Commit
ebfade5
1 Parent(s): 999ad62

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -10
README.md CHANGED
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.5975
23
- - Accuracy: 0.8653
24
- - F1: 0.8599
25
- - Precision: 0.8682
26
- - Recall: 0.8653
27
 
28
  ## Model description
29
 
@@ -48,17 +48,19 @@ The following hyperparameters were used during training:
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
- - num_epochs: 4
52
  - mixed_precision_training: Native AMP
53
 
54
  ### Training results
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
- | 0.1373 | 1.0 | 626 | 0.3654 | 0.8394 | 0.8434 | 0.8542 | 0.8394 |
59
- | 0.0674 | 2.0 | 1252 | 0.5459 | 0.8497 | 0.8499 | 0.8571 | 0.8497 |
60
- | 0.033 | 3.0 | 1878 | 0.5613 | 0.8394 | 0.8390 | 0.8435 | 0.8394 |
61
- | 0.0005 | 4.0 | 2504 | 0.5975 | 0.8653 | 0.8599 | 0.8682 | 0.8653 |
 
 
62
 
63
 
64
  ### Framework versions
 
19
 
20
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.6217
23
+ - Accuracy: 0.8601
24
+ - F1: 0.8587
25
+ - Precision: 0.8603
26
+ - Recall: 0.8601
27
 
28
  ## Model description
29
 
 
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
+ - num_epochs: 6
52
  - mixed_precision_training: Native AMP
53
 
54
  ### Training results
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
+ | 0.1753 | 1.0 | 626 | 0.3718 | 0.8290 | 0.8323 | 0.8513 | 0.8290 |
59
+ | 0.1849 | 2.0 | 1252 | 0.4400 | 0.8342 | 0.8309 | 0.8292 | 0.8342 |
60
+ | 0.0853 | 3.0 | 1878 | 0.5032 | 0.8135 | 0.8171 | 0.8278 | 0.8135 |
61
+ | 0.0046 | 4.0 | 2504 | 0.5403 | 0.8601 | 0.8615 | 0.8655 | 0.8601 |
62
+ | 0.0002 | 5.0 | 3130 | 0.5898 | 0.8601 | 0.8587 | 0.8603 | 0.8601 |
63
+ | 0.0002 | 6.0 | 3756 | 0.6217 | 0.8601 | 0.8587 | 0.8603 | 0.8601 |
64
 
65
 
66
  ### Framework versions