File size: 2,550 Bytes
ac5d95d
 
 
 
 
 
 
b7605ea
 
 
 
 
 
 
 
 
 
 
a029535
b7605ea
 
 
 
 
 
 
 
 
 
 
80f7eae
 
 
 
 
 
 
 
 
 
 
384261b
 
80f7eae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac5d95d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
datasets:
- nvidia/OpenCodeReasoning
- future-technologies/Universal-Transformers-Dataset
metrics:
- bleu
---
# AI FixCode Model πŸ› οΈ

A Transformer-based code fixing model trained on diverse buggy β†’ fixed code pairs. Built using [CodeT5](https://huggingface.co/Salesforce/codet5p-220m), this model identifies and corrects syntactic and semantic errors in source code.

## πŸ“Œ Model Details
- **Base Model**: `Salesforce/codet5p-220m`
- **Type**: Seq2Seq (Encoder-Decoder)
- **Trained On**: Custom dataset with real-world buggy β†’ fixed examples.
- **Languages**: Python (initially), can be expanded to JS, Go, etc.

## πŸ”§ Intended Use

Input a buggy function or script and receive a syntactically and semantically corrected version.

**Example**:
```python
# Input:
def add(x, y)
 return x + y

# Output:
def add(x, y):
    return x + y

🧠 How it Works

The model learns from training examples that map erroneous code to corrected code. It uses token-level sequence generation to predict patches.

πŸš€ Inference

Use the transformers pipeline or run via CLI:

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

model = AutoModelForSeq2SeqLM.from_pretrained("khulnasoft/aifixcode-model")
tokenizer = AutoTokenizer.from_pretrained("khulnasoft/aifixcode-model")

input_code = "def foo(x):\n print(x"
inputs = tokenizer(input_code, return_tensors="pt")
out = model.generate(**inputs, max_length=512)
print(tokenizer.decode(out[0], skip_special_tokens=True))

πŸ“‚ Dataset Format

[
  {
    "input": "def add(x, y)\n return x + y",
    "output": "def add(x, y):\n    return x + y"
  }
]

πŸ›‘οΈ License

MIT License

πŸ™ Acknowledgements

Built using πŸ€— HuggingFace Transformers + Salesforce CodeT5.


---

### ❗ Common Issues That Break Model Cards

- **Using triple quotes** (`"""`) to wrap content β†’ ❌ Not allowed in Markdown.
- **Markdown inside Python strings** β†’ ❌ Will not render correctly.
- **Non-escaped special characters** β†’ e.g., `[` or `*` inside code blocks.
- **Improper indentation inside code fences** β†’ causes rendering problems.
- **Incorrect file name** β†’ Make sure the file is named `README.md` exactly (case-sensitive).

---

If you're uploading this model via the Hugging Face CLI (`transformers-cli` or `huggingface_hub`), placing the `README.md` in the root of your model directory will automatically display it on the model page.

Would you like me to validate this model card in Hugging Face's format validator or prepare a metadata block (`model-index`, `tags`, etc.) as well?