File size: 2,702 Bytes
22e0e62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
### aifixcode_trainer.py

"""
This script sets up a simple HuggingFace-based training + inference pipeline
for bug-fixing AI using a CodeT5 model and supports continual training.
You can upload this script to HuggingFace Space or Hub repo.
"""

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, Trainer, TrainingArguments, DataCollatorForSeq2Seq
from datasets import load_dataset, DatasetDict
import torch
import os

# ========== CONFIG ==========
MODEL_NAME = "Salesforce/codet5p-220m"
MODEL_OUT_DIR = "./aifixcode-model"
TRAIN_DATASET_PATH = "./data/train.json"
VAL_DATASET_PATH = "./data/val.json"

# ========== LOAD MODEL + TOKENIZER ==========
print("Loading model and tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)

# ========== LOAD DATASET ==========
print("Loading dataset...")
def load_json_dataset(train_path, val_path):
    dataset = DatasetDict({
        "train": load_dataset("json", data_files=train_path)["train"],
        "validation": load_dataset("json", data_files=val_path)["train"]
    })
    return dataset

dataset = load_json_dataset(TRAIN_DATASET_PATH, VAL_DATASET_PATH)

# ========== PREPROCESS ==========
print("Tokenizing dataset...")
def preprocess(example):
    input_code = example["input"]
    target_code = example["output"]
    model_inputs = tokenizer(input_code, truncation=True, padding="max_length", max_length=512)
    labels = tokenizer(target_code, truncation=True, padding="max_length", max_length=512)
    model_inputs["labels"] = labels["input_ids"]
    return model_inputs

encoded_dataset = dataset.map(preprocess, batched=True)

# ========== TRAINING SETUP ==========
print("Setting up trainer...")
training_args = TrainingArguments(
    output_dir=MODEL_OUT_DIR,
    evaluation_strategy="epoch",
    save_strategy="epoch",
    learning_rate=5e-5,
    per_device_train_batch_size=4,
    per_device_eval_batch_size=4,
    num_train_epochs=3,
    weight_decay=0.01,
    logging_dir="./logs",
    logging_strategy="epoch",
    push_to_hub=True,
    hub_model_id="khulnasoft/aifixcode-model",
    hub_strategy="every_save"
)

data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=encoded_dataset["train"],
    eval_dataset=encoded_dataset["validation"],
    tokenizer=tokenizer,
    data_collator=data_collator
)

# ========== TRAIN ==========
print("Starting training...")
trainer.train()

# ========== SAVE FINAL MODEL ==========
print("Saving model...")
trainer.save_model(MODEL_OUT_DIR)
tokenizer.save_pretrained(MODEL_OUT_DIR)

print("Training complete and model saved!")