--- base_model: openai/whisper-large-v3 datasets: - google/fleurs library_name: transformers license: apache-2.0 metrics: - wer model-index: - name: whisper-large-v3-Assamese-Version1 results: [] language: - as pipeline_tag: automatic-speech-recognition --- # whisper-large-v3-Assamese-Version1 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.2353 - Wer: 62.8123 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:-------:| | 0.3803 | 5.0505 | 2000 | 0.3681 | 78.7302 | | 0.295 | 10.1010 | 4000 | 0.2985 | 71.4589 | | 0.277 | 15.1515 | 6000 | 0.2724 | 68.1526 | | 0.2493 | 20.2020 | 8000 | 0.2586 | 66.3248 | | 0.2316 | 25.2525 | 10000 | 0.2492 | 64.9954 | | 0.2236 | 30.3030 | 12000 | 0.2435 | 63.9927 | | 0.2351 | 35.3535 | 14000 | 0.2401 | 63.2306 | | 0.2089 | 40.4040 | 16000 | 0.2372 | 62.8295 | | 0.2205 | 45.4545 | 18000 | 0.2358 | 62.5086 | | 0.2253 | 50.5051 | 20000 | 0.2353 | 62.8123 | ### Framework versions - PEFT 0.12.1.dev0 - Transformers 4.45.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1