imagedream-ipmv-diffusers / pipeline_imagedream.py
kiigii's picture
Upload folder using huggingface_hub
aaa261a verified
raw
history blame
15.5 kB
from typing import Any, Callable, Dict, List, Optional, Union
import torch
import torch.nn.functional as F
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.image_processor import PipelineImageInput
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion.pipeline_output import (
StableDiffusionPipelineOutput,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import (
StableDiffusionPipeline,
rescale_noise_cfg,
retrieve_timesteps,
)
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import deprecate
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionModel,
)
from attention_processor import add_imagedream_attn_processor
from camera_utils import get_camera
class ImageDreamPipeline(StableDiffusionPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
image_encoder: CLIPVisionModel = None,
requires_safety_checker: bool = False,
) -> None:
super().__init__(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=add_imagedream_attn_processor(unet),
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
requires_safety_checker=requires_safety_checker,
)
self.num_views = 4
def load_ip_adapter(
self,
pretrained_model_name_or_path_or_dict: Union[
str, List[str], Dict[str, torch.Tensor]
],
subfolder: Union[str, List[str]],
weight_name: Union[str, List[str]],
image_encoder_folder: Optional[str] = "image_encoder",
**kwargs,
):
super().load_ip_adapter(
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
subfolder=subfolder,
weight_name=weight_name,
image_encoder_folder=image_encoder_folder,
**kwargs,
)
add_imagedream_attn_processor(self.unet)
def encode_image_to_latents(
self,
image: PipelineImageInput,
height: int,
width: int,
device: torch.device,
num_images_per_prompt: int = 1,
):
dtype = next(self.vae.parameters()).dtype
if isinstance(image, torch.Tensor):
image = F.interpolate(
image,
(height, width),
mode="bilinear",
align_corners=False,
antialias=True,
)
else:
image = self.image_processor.preprocess(image, height, width)
# image should be in range [-1, 1]
image = image.to(device=device, dtype=dtype)
def vae_encode(image):
posterior = self.vae.encode(image).latent_dist
latents = posterior.sample() * self.vae.config.scaling_factor
latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
return latents
latents = vae_encode(image)
uncond_latents = vae_encode(torch.zeros_like(image))
return latents, uncond_latents
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
elevation: float = 0.0,
timesteps: List[int] = None,
sigmas: List[float] = None,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
# StableDiffusion support `ip_adapter_image_embeds` but we don't use, and raise ValueError.
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[
Union[
Callable[[int, int, Dict], None],
PipelineCallback,
MultiPipelineCallbacks,
]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
**kwargs,
):
if ip_adapter_image_embeds is not None:
raise ValueError(
"do not use `ip_adapter_image_embeds` in ImageDream, use `ip_adapter_image`"
)
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
)
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# ImageDream number of views
if cross_attention_kwargs is None:
num_views = self.num_views
else:
cross_attention_kwargs.pop("num_views", self.num_views)
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# to deal with lora scaling and other possible forward hooks
# 1. Check inputs. Raise error if not correct
if prompt is None:
prompt = ""
self.check_inputs(
prompt,
height,
width,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
ip_adapter_image,
None, # ip_adapter_image_embeds,
callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# 3. Encode input prompt
lora_scale = (
self.cross_attention_kwargs.get("scale", None)
if self.cross_attention_kwargs is not None
else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
device,
num_images_per_prompt,
self.do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=lora_scale,
clip_skip=self.clip_skip,
)
# camera parameter for ImageDream
camera = get_camera(
num_views, elevation=elevation, extra_view=ip_adapter_image is not None
).to(dtype=prompt_embeds.dtype, device=device)
camera = camera.repeat(batch_size * num_images_per_prompt, 1)
if ip_adapter_image is not None:
image_embeds = self.prepare_ip_adapter_image_embeds(
ip_adapter_image,
None, # ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
self.do_classifier_free_guidance,
)
# ImageDream
image_latents, negative_image_latents = self.encode_image_to_latents(
ip_adapter_image,
height,
width,
device,
batch_size * num_images_per_prompt,
)
num_views += 1
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
camera = torch.cat([camera] * 2)
if ip_adapter_image is not None:
image_latents = torch.cat([negative_image_latents, image_latents])
# Multi-view inputs for ImageDream.
prompt_embeds = prompt_embeds.repeat_interleave(num_views, dim=0)
if ip_adapter_image is not None:
image_embeds = [i.repeat_interleave(num_views, dim=0) for i in image_embeds]
# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas
)
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt * num_views,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 6.1 Add image embeds for IP-Adapter
if ip_adapter_image is not None:
added_cond_kwargs = {"image_embeds": image_embeds}
else:
added_cond_kwargs = None
# 6.2 Optionally get Guidance Scale Embedding
timestep_cond = None
if self.unet.config.time_cond_proj_dim is not None:
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
batch_size * num_images_per_prompt
)
timestep_cond = self.get_guidance_scale_embedding(
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
).to(device=device, dtype=latents.dtype)
cross_attention_kwargs = {"num_views": num_views}
if self.cross_attention_kwargs is not None:
cross_attention_kwargs.update(self.cross_attention_kwargs)
# fmt: off
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
if ip_adapter_image is not None:
latent_model_input[num_views - 1 :: num_views, :, :, :] = image_latents
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
class_labels=camera,
encoder_hidden_states=prompt_embeds,
timestep_cond=timestep_cond,
cross_attention_kwargs=cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = torch.lerp(noise_pred_uncond, noise_pred_text, self.guidance_scale)
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
# fmt: on
if not output_type == "latent":
image = self.vae.decode(
latents / self.vae.config.scaling_factor,
return_dict=False,
generator=generator,
)[0]
image, has_nsfw_concept = self.run_safety_checker(
image, device, prompt_embeds.dtype
)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(
image, output_type=output_type, do_denormalize=do_denormalize
)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(
images=image, nsfw_content_detected=has_nsfw_concept
)