kingabzpro
commited on
Commit
•
03dfa90
1
Parent(s):
065fe6f
Hparams-optimized-5
Browse files- Moonman-Lunar-Lander-v2.zip +2 -2
- Moonman-Lunar-Lander-v2/data +20 -20
- Moonman-Lunar-Lander-v2/policy.optimizer.pth +1 -1
- Moonman-Lunar-Lander-v2/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
Moonman-Lunar-Lander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:066d6273788a86029e1312cf264a51674c2759cd01a8028be5dcf3366265a421
|
3 |
+
size 144800
|
Moonman-Lunar-Lander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 32,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,17 +66,17 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
-
"n_steps":
|
80 |
"gamma": 0.997,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f90fbd67a70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f90fbd67b00>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f90fbd67b90>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f90fbd67c20>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f90fbd67cb0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f90fbd67d40>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f90fbd67dd0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f90fbd67e60>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f90fbd67ef0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f90fbd67f80>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f90fbd6d050>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f90fbdbd300>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 32,
|
45 |
+
"num_timesteps": 440832,
|
46 |
+
"_total_timesteps": 440000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1652327756.410429,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAM2Go70fXdO5xxAHvJDoeDxt1x86KWYuOgAAgD8AAIA/DX8qPk+8A7wZUh87glPPuBXuWr2IHUC6AACAPwAAgD+gpCe+SNFxP6Vgmb4XIRC/sTRxvrpR/b0AAAAAAAAAAADG8b2GJfQ+aEOfPfMsur7kIxA9iq5DuwAAAAAAAAAAQHHjPfbUAbr/bUI5gz/XNNd+ZjsgZWK4AACAPwAAgD99Qoo+jl6BvOqLaDtZbx65F5bfvf7iAroAAIA/AACAP83OkjzsMZq5HFvJu6NY1Td7jje7mu4FtwAAgD8AAIA/07gCvmvl2z6Vtck9YLq7vrh/hT14jFK9AAAAAAAAAABAqNM9KRAWuoYqcLrB8MC1QtGJOpbWiDkAAIA/AACAP/NM3b2PNhO6frDguclH3zW2z4q6iOEBOQAAgD8AAIA/cyjjvXENJLkL4lC8NZhtupQlyrld6k+7AAAAAAAAgD/mQTk9uITjOpwrxby91M28WoDDugXkrLwAAAAAAAAAAAAwtTz0VrI/6EA7P/I9k77eDpe8NuiWvQAAAAAAAAAAM/I5PUhNnbq9hk64RM4ctkAv9roicXA3AACAPwAAgD+tx5e+zphzP+pi/702df6+OnRevmL1Az0AAAAAAAAAAM0rbD1cw366kJ0nvC65jbbixDo7jscANgAAgD8AAIA/GnkhvYzhqz+WQ9G+uWbivkafJ7yWBQu+AAAAAAAAAABm2pY7XE9WugcCnTu1B2w4Y9cCu06xObgAAIA/AACAP9qll72PPm66W0Dauj6HerZND1A7VlH5OQAAgD8AAIA/TduyPfYoCjdiJ2q7PLmyNXkbJbvMy4k6AACAPwAAgD+mAZg9e/aLum7AjjmbzgE15s3BOs28orgAAIA/AACAP+aGDj32VFG6avfRuC2dQ7RoPx466m7zNwAAgD8AAIA/81bivY8+dLp2tUG797rVtUFkIDh9vls6AACAPwAAgD8A6aY99vRfugDD0zlJySc0POfUumgx8bgAAIA/AACAPwCe2T2Jgw49SOwhOz2uQ76Fh3u9oSaMPQAAAAAAAAAAwI69vVKYqTiiTsC6EWQHPbqRhjcS5Pi7AACAPwAAgD+aQry8w40+ulU0SrpiifO04UvuunhPaTkAAIA/AACAP5qaH724lve52l3au2a/tTgIV4g74zMgOgAAgD8AAIA/s7VUvR8Fg7c2GK67JiDFOCXGVDpohD86AACAPwAAgD/N1A89ZX/CPk5dSL30EbS+ABg1PbyORb0AAAAAAAAAAGY9sLwm4a0+YFzSPaORZ76uBe094jhQPAAAAAAAAAAAAGKrPUj9gLqbfri6V0gitu89C7sOPdU5AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0018909090909091653,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvcPt0LCsQ0CUhpRSlIwBbJRLu4wBdJRHQIXl0U/OdG11fZQoaAZoCWgPQwg3qP3WTi9fQJSGlFKUaBVN6ANoFkdAhfA3QUpNK3V9lChoBmgJaA9DCFTle0YiCWJAlIaUUpRoFU3oA2gWR0CGBl+x4Y78dX2UKGgGaAloD0MIJ0ut9xucXECUhpRSlGgVTegDaBZHQIYTpH09QoF1fZQoaAZoCWgPQwhAGHjuPS1YQJSGlFKUaBVN6ANoFkdAhhcAN5MURHV9lChoBmgJaA9DCCTwh5//iVtAlIaUUpRoFU3oA2gWR0CGGY9/SYw7dX2UKGgGaAloD0MIXfsCemG8YECUhpRSlGgVTegDaBZHQIYbFroGIKt1fZQoaAZoCWgPQwjoFORnI6peQJSGlFKUaBVN6ANoFkdAhh5Lj5sTFnV9lChoBmgJaA9DCN7oYz4gAVVAlIaUUpRoFU3oA2gWR0CGJ/uVHFxXdX2UKGgGaAloD0MIBkmfVtGDYUCUhpRSlGgVTegDaBZHQIYtz7hvR7Z1fZQoaAZoCWgPQwiKyoY1lQkxwJSGlFKUaBVLi2gWR0CHK7Ed/8VIdX2UKGgGaAloD0MI9FKxMa+IX0CUhpRSlGgVTegDaBZHQIcsc9jgAIZ1fZQoaAZoCWgPQwjcSq/NxjBYQJSGlFKUaBVN6ANoFkdAhzgZRbbDdnV9lChoBmgJaA9DCMSUSKKXFGFAlIaUUpRoFU3oA2gWR0CHRLMbFS88dX2UKGgGaAloD0MIyLd3DfpuUkCUhpRSlGgVTegDaBZHQIdQk54nndR1fZQoaAZoCWgPQwjrxOV4halmQJSGlFKUaBVN6ANoFkdAh1PPfj0cwXV9lChoBmgJaA9DCEmil1Es0VtAlIaUUpRoFU3oA2gWR0CHZdNZ/0/XdX2UKGgGaAloD0MIumWH+IdXXkCUhpRSlGgVTegDaBZHQIdo95OafBh1fZQoaAZoCWgPQwgMrU7O0JJhQJSGlFKUaBVN6ANoFkdAh2pTr/sE7nV9lChoBmgJaA9DCMoZijve61pAlIaUUpRoFU3oA2gWR0CHcLeHi3ocdX2UKGgGaAloD0MI3c1THfKUYUCUhpRSlGgVTegDaBZHQId5UwUQCjl1fZQoaAZoCWgPQwhE/MOWnkthQJSGlFKUaBVN6ANoFkdAh34nHvMKTnV9lChoBmgJaA9DCOi+nNkuJWJAlIaUUpRoFU3oA2gWR0CHf03T/hl2dX2UKGgGaAloD0MIZJP8iF8VW0CUhpRSlGgVTegDaBZHQIeOCZDzAet1fZQoaAZoCWgPQwiVYkfjUNdIQJSGlFKUaBVN6ANoFkdAh5I2v0RODnV9lChoBmgJaA9DCPYjRWRYiFtAlIaUUpRoFU3oA2gWR0CHnF0kGA09dX2UKGgGaAloD0MI+kMzT65BX0CUhpRSlGgVTegDaBZHQIede1lXiit1fZQoaAZoCWgPQwj99+C1S8pbQJSGlFKUaBVN6ANoFkdAh6LcghbGFXV9lChoBmgJaA9DCP0zg/jA8V9AlIaUUpRoFU3oA2gWR0CHvB8/lhgFdX2UKGgGaAloD0MISFFn7iH9T0CUhpRSlGgVS7RoFkdAh72MpPRAr3V9lChoBmgJaA9DCHgLJCh+jlNAlIaUUpRoFU3oA2gWR0CHv5AKOT7mdX2UKGgGaAloD0MIwHgGDf18U0CUhpRSlGgVTegDaBZHQIfESwhW5pd1fZQoaAZoCWgPQwhlwi/18+ViQJSGlFKUaBVN6ANoFkdAiLo4r8R+SnV9lChoBmgJaA9DCMDtCRLbalxAlIaUUpRoFU3oA2gWR0CIvM2zfJmvdX2UKGgGaAloD0MIwktw6gMAV0CUhpRSlGgVTegDaBZHQIi/aeyzHCJ1fZQoaAZoCWgPQwielbTiG+BhQJSGlFKUaBVN6ANoFkdAiMgLiEQGwHV9lChoBmgJaA9DCK+xS1TvNWJAlIaUUpRoFU3oA2gWR0CI2h5Rjz7NdX2UKGgGaAloD0MI8db5t0vyYkCUhpRSlGgVTegDaBZHQIjlG3z+WGB1fZQoaAZoCWgPQwgVxhaCHI9YQJSGlFKUaBVN6ANoFkdAiOoOdGy5Z3V9lChoBmgJaA9DCINRSZ2ALF5AlIaUUpRoFU3oA2gWR0CI64CjDbaidX2UKGgGaAloD0MI7s1vmGg5XkCUhpRSlGgVTegDaBZHQIjubCtRvWJ1fZQoaAZoCWgPQwibkUHuItNgQJSGlFKUaBVN6ANoFkdAiPdTJIUah3V9lChoBmgJaA9DCBSX4xUIWmBAlIaUUpRoFU3oA2gWR0CI/LxLCemOdX2UKGgGaAloD0MIX7LxYIsZYECUhpRSlGgVTegDaBZHQIkHLteD3/R1fZQoaAZoCWgPQwhN+RBUje1hQJSGlFKUaBVN6ANoFkdAiQfZ0Syt3nV9lChoBmgJaA9DCKK3eHjPlGRAlIaUUpRoFU3oA2gWR0CJEgAlOXVtdX2UKGgGaAloD0MIvfxOkxlQYECUhpRSlGgVTegDaBZHQIkdDBZZB9l1fZQoaAZoCWgPQwgg8SvWcNtfQJSGlFKUaBVN6ANoFkdAiScwHiWE9XV9lChoBmgJaA9DCNHLKJZbxlFAlIaUUpRoFU3oA2gWR0CJKdGvOhTPdX2UKGgGaAloD0MIenJNgUyuZECUhpRSlGgVTegDaBZHQIk5RM6BAfN1fZQoaAZoCWgPQwiFJR5QNoVYQJSGlFKUaBVN6ANoFkdAiTv2DYh+v3V9lChoBmgJaA9DCJxOstXlUGNAlIaUUpRoFU3oA2gWR0CJPSqEvkBCdX2UKGgGaAloD0MIxcn9DkWcWUCUhpRSlGgVTegDaBZHQIlCqaRZED11fZQoaAZoCWgPQwjb+uk/a8RGQJSGlFKUaBVL2WgWR0CJQrBKtga4dX2UKGgGaAloD0MIe0/ltCcOZECUhpRSlGgVTegDaBZHQIoz/keZG8V1fZQoaAZoCWgPQwi05zI1ialgQJSGlFKUaBVN6ANoFkdAijjkWykbgnV9lChoBmgJaA9DCN/hdmhYf1xAlIaUUpRoFU3oA2gWR0CKOf57gKnfdX2UKGgGaAloD0MIeH3mrE8PX0CUhpRSlGgVTegDaBZHQIpGejVQQ+V1fZQoaAZoCWgPQwhEUgslkzJhQJSGlFKUaBVN6ANoFkdAilLJBomG/XV9lChoBmgJaA9DCOBm8WJh/lBAlIaUUpRoFU3oA2gWR0CKU9IFNcnmdX2UKGgGaAloD0MI7FBNSdanYkCUhpRSlGgVTegDaBZHQIpYhxtHhCN1fZQoaAZoCWgPQwgqHaz/c9w7QJSGlFKUaBVLuGgWR0CKX0S4e9zwdX2UKGgGaAloD0MI+IkD6PfxXkCUhpRSlGgVTegDaBZHQIpwQatLcsV1fZQoaAZoCWgPQwgFM6ZgDehnQJSGlFKUaBVN6ANoFkdAinGn4Glhw3V9lChoBmgJaA9DCDnWxW20N2FAlIaUUpRoFU3oA2gWR0CKc5ASFoL5dX2UKGgGaAloD0MIsI9OXfnZYECUhpRSlGgVTegDaBZHQIp4Q71ZkkN1fZQoaAZoCWgPQwjHgsKgTKVjQJSGlFKUaBVN6ANoFkdAioLSN4qwyXV9lChoBmgJaA9DCAKetHDZe2FAlIaUUpRoFU3oA2gWR0CKhXvRZ2ZBdX2UKGgGaAloD0MI2h1SDJDeYkCUhpRSlGgVTegDaBZHQIqIGSntOVR1fZQoaAZoCWgPQwgom3KFdxtjQJSGlFKUaBVN6ANoFkdAipCljNIK+nV9lChoBmgJaA9DCFqEYitohFNAlIaUUpRoFUvMaBZHQIqhcJ6Y3Nt1fZQoaAZoCWgPQwgMIlLTrmVgQJSGlFKUaBVN6ANoFkdAiqJYEnssx3V9lChoBmgJaA9DCMe7I2M1FmBAlIaUUpRoFU3oA2gWR0CKrLP3SKFadX2UKGgGaAloD0MIlL2lnC/VYECUhpRSlGgVTegDaBZHQIqxXDk2gnN1fZQoaAZoCWgPQwjn4JnQpBFgQJSGlFKUaBVN6ANoFkdAirKdCNS62HV9lChoBmgJaA9DCD5BYrt7YWBAlIaUUpRoFU3oA2gWR0CKtVFn7HhkdX2UKGgGaAloD0MIda+T+jLkZECUhpRSlGgVTegDaBZHQIq9r3RG+bp1fZQoaAZoCWgPQwhqoWRyai5jQJSGlFKUaBVN6ANoFkdAi62sxfv4NHV9lChoBmgJaA9DCDXSUnk7qlxAlIaUUpRoFU3oA2gWR0CLt7NMXaakdX2UKGgGaAloD0MI1h9hGDCqZECUhpRSlGgVTegDaBZHQIu4UY64lQd1fZQoaAZoCWgPQwihv9AjRvlGQJSGlFKUaBVLy2gWR0CLuMtqYZ2qdX2UKGgGaAloD0MIXD0nve+7ZECUhpRSlGgVTegDaBZHQIvMq7VawEB1fZQoaAZoCWgPQwhHOC140elhQJSGlFKUaBVN6ANoFkdAi9aKQRwqAnV9lChoBmgJaA9DCPW6RWCsgmJAlIaUUpRoFU3oA2gWR0CL2UY2Kl54dX2UKGgGaAloD0MIIlLTLiZFY0CUhpRSlGgVTegDaBZHQIvo+twJgLJ1fZQoaAZoCWgPQwgsvMtFfLNgQJSGlFKUaBVN6ANoFkdAi+vZKnNxEXV9lChoBmgJaA9DCAIR4srZc2FAlIaUUpRoFU3oA2gWR0CL7QZP2wmmdX2UKGgGaAloD0MI965BX/oVYUCUhpRSlGgVTegDaBZHQIvy0G5c1O11fZQoaAZoCWgPQwhIpG38iflfQJSGlFKUaBVN6ANoFkdAi/LW/rSmZXV9lChoBmgJaA9DCIeHMH6afWFAlIaUUpRoFU3oA2gWR0CL+n/FR51OdX2UKGgGaAloD0MIRbx1/u0HZECUhpRSlGgVTegDaBZHQIv//fTCtRx1fZQoaAZoCWgPQwhQyM7b2I1cQJSGlFKUaBVN6ANoFkdAjA3u8kD6nHV9lChoBmgJaA9DCEAVN24xpF1AlIaUUpRoFU3oA2gWR0CMGvqNZNfxdX2UKGgGaAloD0MIRX9o5skmVECUhpRSlGgVS5NoFkdAjBtXMyJsPHV9lChoBmgJaA9DCBztuOF3cGJAlIaUUpRoFU3oA2gWR0CMHAxHoX9BdX2UKGgGaAloD0MIEYsYdhhMXUCUhpRSlGgVTegDaBZHQIwg5IOH3111fZQoaAZoCWgPQwggfv578JJkQJSGlFKUaBVN6ANoFkdAjCe5rYXfqHV9lChoBmgJaA9DCG3GaYgqckRAlIaUUpRoFUvZaBZHQIwwG9zwMH91fZQoaAZoCWgPQwinIarw50RkQJSGlFKUaBVN6ANoFkdAjDhS619fC3V9lChoBmgJaA9DCJKzsKedLGJAlIaUUpRoFU3oA2gWR0CMOcGgzxgBdWUu"
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 210,
|
79 |
+
"n_steps": 656,
|
80 |
"gamma": 0.997,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
Moonman-Lunar-Lander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84893
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8f0320989b1a2ead31aaf06658ee323397e4160bc51a7fa489d5606eb60cfc4
|
3 |
size 84893
|
Moonman-Lunar-Lander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0067d78b86ce58633ca1779a114459c07b85935f4eb13ad145587d76473dafc7
|
3 |
size 43201
|
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 256.40 +/- 21.37
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fba7bdd8f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fba7bddf050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fba7bddf0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fba7bddf170>", "_build": "<function ActorCriticPolicy._build at 0x7fba7bddf200>", "forward": "<function ActorCriticPolicy.forward at 0x7fba7bddf290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fba7bddf320>", "_predict": "<function ActorCriticPolicy._predict at 0x7fba7bddf3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fba7bddf440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fba7bddf4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fba7bddf560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fba7be1cdb0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 520000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652299366.0560315, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAALOnlT32sAq6m0Vbu/LoHLdNbps7Btt+OgAAgD8AAIA/c7KOvYUb1bkJZZI6kjeoPKrkNjuw+/g6AACAPwAAgD9d7YW+NzEkvbavdr1/U/67u26PPsrEujwAAIA/AACAPzOIkrxcV126PYPPOokhyzVE63A7W+/xuQAAgD8AAIA/AOpcPXvygLqm3bS7r7EGN2P64rmYDl62AACAPwAAgD9ABL09rrmTulO0wruuTNU2YhePus0iPbYAAIA/AACAP+bmJz2uaYO6YhmUuumA9rUJwLQ6TRqqOQAAgD8AAIA/phq0vYiU7j5tePY8GTiKvvkVaLz0WgS9AAAAAAAAAAAa2TK94ZrIuJY2lzy39La8xro/u/6Gjb0AAAAAAAAAAA0lhL0piAS6MPPSuoCb8rX4vCe6df/zOQAAgD8AAIA/mpWLO6QAGrnrreE67iYTNlVEjTtr5AW6AACAPwAAgD8a5/G9cA2ZP5DmJ75qS76+oY2rvR4rVL0AAAAAAAAAALkfGr9OdEa+TfWJvDCXGbs1X1U+IwjzuQAAgD8AAIA/uqDovmGizryYI3O8Gk8BuwSinj7wA/w7AACAPwAAgD+aLnu9KdxnuNTtq7hGS8Czxk4AO/0LzjcAAIA/AACAP80rm732zDC6i6JfvH3LsbvpC026OkebPAAAgD8AAAAAMx/jveQ4mD9ePOm9LCmjvtAzhL32i8M9AAAAAAAAAACA+QA9uMapuZqVCjv0aE081EU8OkJXRTsAAIA/AACAP/P3Sr44Isi7QkI6vLYJrbldLyk9H8qUOgAAgD8AAIA/s2l6vcN5RrpWQFE7ERyHtEHDkjkm9W+6AACAPwAAgD+aMPw8Cmxcu4pUcrxsmpI8/UulPF3Ye70AAIA/AACAP028CT3DoSS6WjiKOoJYGbUKjrG7lqWguQAAgD8AAIA/M9J8Pn+Fez8I5sc9JzuwvlJy9T29H+S9AAAAAAAAAACaOVC8w611umqycLwvG/y4RA0gu5YCYTgAAIA/AACAPzOPoDtzljo/Aue2vboNrr4jaZm9z2MXvQAAAAAAAAAAmovUPRSYhLquoo+761GROB3peDmFE5E5AACAPwAAgD8tUwm+jxgBvCbFgrztyAI9rh+hvLpZ8bsAAIA/AACAP3OQjb1c82O6bMAFupPHILUejtm6zgUaOQAAgD8AAIA/TQRSvUhzs7r5Gia6NQwNNnv3ADpipj05AACAPwAAgD/teDC+cRFxu5/nITurDcY4Y5yrPEbCWbkAAIA/AACAP2Pshb6kYTM8fkTiO9J/kLpe27u9+mSVuwAAgD8AAIA/gHbVPV7E4D5dkNC9bMfKvrQgSr1txYK8AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.040000000000000036, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsI9OXflhXUCUhpRSlIwBbJRN6AOMAXSUR0CT/zjurp7kdX2UKGgGaAloD0MIUyKJXkbOX0CUhpRSlGgVTegDaBZHQJP/O6mO2iN1fZQoaAZoCWgPQwhxrIvb6EBgQJSGlFKUaBVN6ANoFkdAlAK9O2y9mHV9lChoBmgJaA9DCOknnN3aC2JAlIaUUpRoFU3oA2gWR0CUB6OyE+PjdX2UKGgGaAloD0MIOurouJqKZECUhpRSlGgVTegDaBZHQJQIn2M85jp1fZQoaAZoCWgPQwjVJk7ud9ReQJSGlFKUaBVN6ANoFkdAlArawUxmCnV9lChoBmgJaA9DCDPeVnptNV1AlIaUUpRoFU3oA2gWR0CUDXhcZ9/jdX2UKGgGaAloD0MI+uyA64qNVUCUhpRSlGgVTegDaBZHQJQVE1WKdhB1fZQoaAZoCWgPQwh8fEJ23vVaQJSGlFKUaBVN6ANoFkdAlBkkP1+RYHV9lChoBmgJaA9DCNQNFHgnymZAlIaUUpRoFU3oA2gWR0CUGw6ClJpWdX2UKGgGaAloD0MIDyibcoVgXECUhpRSlGgVTegDaBZHQJQfP2IwdsB1fZQoaAZoCWgPQwhUHXIz3N5WQJSGlFKUaBVN6ANoFkdAlCOSeVcD83V9lChoBmgJaA9DCElKehhaZ1xAlIaUUpRoFU3oA2gWR0CUJBWl/H5rdX2UKGgGaAloD0MI1/m3y346WkCUhpRSlGgVTegDaBZHQJQmXBj4Hop1fZQoaAZoCWgPQwhhqS7gZdBdQJSGlFKUaBVN6ANoFkdAlDIKFEiMYXV9lChoBmgJaA9DCIAr2bERKl1AlIaUUpRoFU3oA2gWR0CUM5QemvW6dX2UKGgGaAloD0MIkMAffv4lXkCUhpRSlGgVTegDaBZHQJQ3JJXhfjV1fZQoaAZoCWgPQwiqDONuEORgQJSGlFKUaBVN6ANoFkdAlDfp++dsi3V9lChoBmgJaA9DCPipKjQQ/zlAlIaUUpRoFUvLaBZHQJQ5fva11GN1fZQoaAZoCWgPQwiDonkAizw2QJSGlFKUaBVN6ANoFkdAlDqV0knkUHV9lChoBmgJaA9DCGVuvhHdoyJAlIaUUpRoFUv4aBZHQJQ7M0YTCch1fZQoaAZoCWgPQwggmKPHb7BjQJSGlFKUaBVN6ANoFkdAlD1dpdrwfHV9lChoBmgJaA9DCBIUP8Zc+2BAlIaUUpRoFU3oA2gWR0CURChqTKT0dX2UKGgGaAloD0MIbNCX3n5wZUCUhpRSlGgVTegDaBZHQJT6i96C17Z1fZQoaAZoCWgPQwhruwm+aapDQJSGlFKUaBVL1mgWR0CU/Ezf779AdX2UKGgGaAloD0MIZhU2A1woI0CUhpRSlGgVS7loFkdAlQBN4qwyI3V9lChoBmgJaA9DCOT4odKIDWJAlIaUUpRoFU3oA2gWR0CVAVMuez2OdX2UKGgGaAloD0MI0el5NxaDZECUhpRSlGgVTegDaBZHQJUBWE25xzd1fZQoaAZoCWgPQwikwW1t4c1GQJSGlFKUaBVLuWgWR0CVAoKneiztdX2UKGgGaAloD0MI8WQ3M/qjQkCUhpRSlGgVS+poFkdAlQXWWpqASXV9lChoBmgJaA9DCJ7wEpz6zl1AlIaUUpRoFU3oA2gWR0CVCMj59E1EdX2UKGgGaAloD0MIw7tcxHcWYUCUhpRSlGgVTegDaBZHQJUMVKYiPhh1fZQoaAZoCWgPQwhApUqUvS0+QJSGlFKUaBVNFAFoFkdAlRUQg1WKdnV9lChoBmgJaA9DCNumeFzUR2FAlIaUUpRoFU3oA2gWR0CVIpwiaAnVdX2UKGgGaAloD0MIpBr2e2JVIkCUhpRSlGgVTegDaBZHQJUjqpR4yGl1fZQoaAZoCWgPQwjnq+Rjd75ZQJSGlFKUaBVN6ANoFkdAlSPOHBUJfXV9lChoBmgJaA9DCDaTb7a5t2JAlIaUUpRoFU3oA2gWR0CVJhfWtlqbdX2UKGgGaAloD0MIQE8DBknXYECUhpRSlGgVTegDaBZHQJUv3GQ0XP91fZQoaAZoCWgPQwg/qIsUylBkQJSGlFKUaBVN6ANoFkdAlTE0lme18nV9lChoBmgJaA9DCGKCGr4Fh2FAlIaUUpRoFU3oA2gWR0CVMYb961LKdX2UKGgGaAloD0MINIY5QZuiX0CUhpRSlGgVTegDaBZHQJUxidFvybx1fZQoaAZoCWgPQwioOXmRCY5kQJSGlFKUaBVN6ANoFkdAlTUcn/kvK3V9lChoBmgJaA9DCNf4TPbPKGJAlIaUUpRoFU3oA2gWR0CVOeF0PpY+dX2UKGgGaAloD0MIsOjWa/oeZUCUhpRSlGgVTegDaBZHQJU62lpGnXN1fZQoaAZoCWgPQwgrEhPU8J1JQJSGlFKUaBVN6ANoFkdAlT0W8VYZEXV9lChoBmgJaA9DCKBQTx8Bd2JAlIaUUpRoFU3oA2gWR0CVP6T2nKnvdX2UKGgGaAloD0MIQfM5d7smM0CUhpRSlGgVS9RoFkdAlUEacmShanV9lChoBmgJaA9DCGHfTiLCp11AlIaUUpRoFU3oA2gWR0CVRr+kP+XJdX2UKGgGaAloD0MIv7m/etxlY0CUhpRSlGgVTegDaBZHQJVKdz2exwB1fZQoaAZoCWgPQwjs3/WZs4I8QJSGlFKUaBVL2mgWR0CV/Lco6S1WdX2UKGgGaAloD0MIctwpHayCXUCUhpRSlGgVTegDaBZHQJYERoGpuMx1fZQoaAZoCWgPQwgw1jcwuVkhQJSGlFKUaBVLp2gWR0CWBMA5aNdadX2UKGgGaAloD0MI/RadLLW0XECUhpRSlGgVTegDaBZHQJYE42NvOyF1fZQoaAZoCWgPQwjzWDMyyOZZQJSGlFKUaBVN6ANoFkdAlgdp2yLQ5XV9lChoBmgJaA9DCH3mrE85RkNAlIaUUpRoFUuZaBZHQJYSYpPRArx1fZQoaAZoCWgPQwi6MT1hicVSQJSGlFKUaBVN6ANoFkdAlhN65f+junV9lChoBmgJaA9DCHeDaK1ogx1AlIaUUpRoFUvGaBZHQJYUoJ3PiUB1fZQoaAZoCWgPQwg4LA38qN1iQJSGlFKUaBVN6ANoFkdAlhi+a8YhuHV9lChoBmgJaA9DCEdYVMRptWVAlIaUUpRoFU3oA2gWR0CWGYWSEDhcdX2UKGgGaAloD0MIesVTj7TtYkCUhpRSlGgVTegDaBZHQJYbKi9Iwud1fZQoaAZoCWgPQwjTEiujkT8RwJSGlFKUaBVLmGgWR0CWG9BdD6WPdX2UKGgGaAloD0MI0EVDxqMkN8CUhpRSlGgVS7toFkdAlirzKYAsCnV9lChoBmgJaA9DCFacai3MIlpAlIaUUpRoFU3oA2gWR0CWL6LxqfvndX2UKGgGaAloD0MIMSjTaHI3U0CUhpRSlGgVTegDaBZHQJYxbOE/Spl1fZQoaAZoCWgPQwi9jc2OVH9hQJSGlFKUaBVN6ANoFkdAljXg3974SHV9lChoBmgJaA9DCOHRxhHrMWNAlIaUUpRoFU3oA2gWR0CWNxRQ79ycdX2UKGgGaAloD0MIKPG5E+zkYUCUhpRSlGgVTegDaBZHQJY3HHQyAQR1fZQoaAZoCWgPQwjbp+Mxg2xgQJSGlFKUaBVN6ANoFkdAljhl8stkF3V9lChoBmgJaA9DCCO+E7PeL2JAlIaUUpRoFU3oA2gWR0CWO8iW3Sa3dX2UKGgGaAloD0MI5dNjWwYcXECUhpRSlGgVTegDaBZHQJY+wVpKzzF1fZQoaAZoCWgPQwg9tmXAWSZhQJSGlFKUaBVN6ANoFkdAlkIhHkLhJnV9lChoBmgJaA9DCBEBh1ClwEVAlIaUUpRoFUugaBZHQJZEngNwzch1fZQoaAZoCWgPQwgawcb17xtiQJSGlFKUaBVN6ANoFkdAlkscenyd4HV9lChoBmgJaA9DCG4xPzc0N0ZAlIaUUpRoFUu+aBZHQJcDy1SflIV1fZQoaAZoCWgPQwhBYyZRLzZjQJSGlFKUaBVN6ANoFkdAlwdq+8Gs3nV9lChoBmgJaA9DCCB+/nvwhWJAlIaUUpRoFU3oA2gWR0CXCIXUH6dldX2UKGgGaAloD0MI5BWInpQsY0CUhpRSlGgVTegDaBZHQJcKmgYgq3F1fZQoaAZoCWgPQwhCeoocIk4FQJSGlFKUaBVL3WgWR0CXCxgYxcmjdX2UKGgGaAloD0MIF58CYDzzFkCUhpRSlGgVS99oFkdAlw78ZgogFHV9lChoBmgJaA9DCKKb/YFyEz5AlIaUUpRoFUvNaBZHQJcPNf6XSjR1fZQoaAZoCWgPQwhRFOgTeUxeQJSGlFKUaBVN6ANoFkdAlxNV3Qla83V9lChoBmgJaA9DCMe9+Q0TYmFAlIaUUpRoFU3oA2gWR0CXFI/kNnXedX2UKGgGaAloD0MI4PdvXhwpZ0CUhpRSlGgVTegDaBZHQJcU15qubI91fZQoaAZoCWgPQwj8NsR4zRRhQJSGlFKUaBVN6ANoFkdAlxgAt4A0bnV9lChoBmgJaA9DCKoQj8RLBGRAlIaUUpRoFU3oA2gWR0CXHGt+TeO5dX2UKGgGaAloD0MIhqsDIG6sYUCUhpRSlGgVTegDaBZHQJcdUDhcZ+B1fZQoaAZoCWgPQwjbNLbXAvBiQJSGlFKUaBVN6ANoFkdAlx9TJp35e3V9lChoBmgJaA9DCOD1mbM+D11AlIaUUpRoFU3oA2gWR0CXIudKdxyXdX2UKGgGaAloD0MILzTXaaTDSECUhpRSlGgVS6RoFkdAlyM72YfGMnV9lChoBmgJaA9DCJXyWgldYmZAlIaUUpRoFU3oA2gWR0CXKB5rgwXZdX2UKGgGaAloD0MIWMfxQ6W5Q0CUhpRSlGgVS8RoFkdAlzSeUt7KJXV9lChoBmgJaA9DCABzLVqAaV5AlIaUUpRoFU3oA2gWR0CXNSQ9RrJsdX2UKGgGaAloD0MI4gD6ff8jYkCUhpRSlGgVTegDaBZHQJc1kjjaPCF1fZQoaAZoCWgPQwgIdCZtKjZgQJSGlFKUaBVN6ANoFkdAlzWzHwPRRnV9lChoBmgJaA9DCJ/ouvCDLF1AlIaUUpRoFU3oA2gWR0CXQ4XdCVrzdX2UKGgGaAloD0MI2GSNeggiY0CUhpRSlGgVTegDaBZHQJdErG4qgAZ1fZQoaAZoCWgPQwhVavZAqyllQJSGlFKUaBVN6ANoFkdAl0ixguyu6nV9lChoBmgJaA9DCMY1PpN9aGNAlIaUUpRoFU3oA2gWR0CXSWjUutfYdX2UKGgGaAloD0MIvjJv1XXJXECUhpRSlGgVTegDaBZHQJdK996Tnq51fZQoaAZoCWgPQwj/PuPCgYtlQJSGlFKUaBVN6ANoFkdAl0uSwbEP2HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "n_steps": 650, "gamma": 0.997, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f90fbd67a70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f90fbd67b00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f90fbd67b90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f90fbd67c20>", "_build": "<function ActorCriticPolicy._build at 0x7f90fbd67cb0>", "forward": "<function ActorCriticPolicy.forward at 0x7f90fbd67d40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f90fbd67dd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f90fbd67e60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f90fbd67ef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f90fbd67f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f90fbd6d050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f90fbdbd300>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 440832, "_total_timesteps": 440000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652327756.410429, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAM2Go70fXdO5xxAHvJDoeDxt1x86KWYuOgAAgD8AAIA/DX8qPk+8A7wZUh87glPPuBXuWr2IHUC6AACAPwAAgD+gpCe+SNFxP6Vgmb4XIRC/sTRxvrpR/b0AAAAAAAAAAADG8b2GJfQ+aEOfPfMsur7kIxA9iq5DuwAAAAAAAAAAQHHjPfbUAbr/bUI5gz/XNNd+ZjsgZWK4AACAPwAAgD99Qoo+jl6BvOqLaDtZbx65F5bfvf7iAroAAIA/AACAP83OkjzsMZq5HFvJu6NY1Td7jje7mu4FtwAAgD8AAIA/07gCvmvl2z6Vtck9YLq7vrh/hT14jFK9AAAAAAAAAABAqNM9KRAWuoYqcLrB8MC1QtGJOpbWiDkAAIA/AACAP/NM3b2PNhO6frDguclH3zW2z4q6iOEBOQAAgD8AAIA/cyjjvXENJLkL4lC8NZhtupQlyrld6k+7AAAAAAAAgD/mQTk9uITjOpwrxby91M28WoDDugXkrLwAAAAAAAAAAAAwtTz0VrI/6EA7P/I9k77eDpe8NuiWvQAAAAAAAAAAM/I5PUhNnbq9hk64RM4ctkAv9roicXA3AACAPwAAgD+tx5e+zphzP+pi/702df6+OnRevmL1Az0AAAAAAAAAAM0rbD1cw366kJ0nvC65jbbixDo7jscANgAAgD8AAIA/GnkhvYzhqz+WQ9G+uWbivkafJ7yWBQu+AAAAAAAAAABm2pY7XE9WugcCnTu1B2w4Y9cCu06xObgAAIA/AACAP9qll72PPm66W0Dauj6HerZND1A7VlH5OQAAgD8AAIA/TduyPfYoCjdiJ2q7PLmyNXkbJbvMy4k6AACAPwAAgD+mAZg9e/aLum7AjjmbzgE15s3BOs28orgAAIA/AACAP+aGDj32VFG6avfRuC2dQ7RoPx466m7zNwAAgD8AAIA/81bivY8+dLp2tUG797rVtUFkIDh9vls6AACAPwAAgD8A6aY99vRfugDD0zlJySc0POfUumgx8bgAAIA/AACAPwCe2T2Jgw49SOwhOz2uQ76Fh3u9oSaMPQAAAAAAAAAAwI69vVKYqTiiTsC6EWQHPbqRhjcS5Pi7AACAPwAAgD+aQry8w40+ulU0SrpiifO04UvuunhPaTkAAIA/AACAP5qaH724lve52l3au2a/tTgIV4g74zMgOgAAgD8AAIA/s7VUvR8Fg7c2GK67JiDFOCXGVDpohD86AACAPwAAgD/N1A89ZX/CPk5dSL30EbS+ABg1PbyORb0AAAAAAAAAAGY9sLwm4a0+YFzSPaORZ76uBe094jhQPAAAAAAAAAAAAGKrPUj9gLqbfri6V0gitu89C7sOPdU5AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0018909090909091653, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvcPt0LCsQ0CUhpRSlIwBbJRLu4wBdJRHQIXl0U/OdG11fZQoaAZoCWgPQwg3qP3WTi9fQJSGlFKUaBVN6ANoFkdAhfA3QUpNK3V9lChoBmgJaA9DCFTle0YiCWJAlIaUUpRoFU3oA2gWR0CGBl+x4Y78dX2UKGgGaAloD0MIJ0ut9xucXECUhpRSlGgVTegDaBZHQIYTpH09QoF1fZQoaAZoCWgPQwhAGHjuPS1YQJSGlFKUaBVN6ANoFkdAhhcAN5MURHV9lChoBmgJaA9DCCTwh5//iVtAlIaUUpRoFU3oA2gWR0CGGY9/SYw7dX2UKGgGaAloD0MIXfsCemG8YECUhpRSlGgVTegDaBZHQIYbFroGIKt1fZQoaAZoCWgPQwjoFORnI6peQJSGlFKUaBVN6ANoFkdAhh5Lj5sTFnV9lChoBmgJaA9DCN7oYz4gAVVAlIaUUpRoFU3oA2gWR0CGJ/uVHFxXdX2UKGgGaAloD0MIBkmfVtGDYUCUhpRSlGgVTegDaBZHQIYtz7hvR7Z1fZQoaAZoCWgPQwiKyoY1lQkxwJSGlFKUaBVLi2gWR0CHK7Ed/8VIdX2UKGgGaAloD0MI9FKxMa+IX0CUhpRSlGgVTegDaBZHQIcsc9jgAIZ1fZQoaAZoCWgPQwjcSq/NxjBYQJSGlFKUaBVN6ANoFkdAhzgZRbbDdnV9lChoBmgJaA9DCMSUSKKXFGFAlIaUUpRoFU3oA2gWR0CHRLMbFS88dX2UKGgGaAloD0MIyLd3DfpuUkCUhpRSlGgVTegDaBZHQIdQk54nndR1fZQoaAZoCWgPQwjrxOV4halmQJSGlFKUaBVN6ANoFkdAh1PPfj0cwXV9lChoBmgJaA9DCEmil1Es0VtAlIaUUpRoFU3oA2gWR0CHZdNZ/0/XdX2UKGgGaAloD0MIumWH+IdXXkCUhpRSlGgVTegDaBZHQIdo95OafBh1fZQoaAZoCWgPQwgMrU7O0JJhQJSGlFKUaBVN6ANoFkdAh2pTr/sE7nV9lChoBmgJaA9DCMoZijve61pAlIaUUpRoFU3oA2gWR0CHcLeHi3ocdX2UKGgGaAloD0MI3c1THfKUYUCUhpRSlGgVTegDaBZHQId5UwUQCjl1fZQoaAZoCWgPQwhE/MOWnkthQJSGlFKUaBVN6ANoFkdAh34nHvMKTnV9lChoBmgJaA9DCOi+nNkuJWJAlIaUUpRoFU3oA2gWR0CHf03T/hl2dX2UKGgGaAloD0MIZJP8iF8VW0CUhpRSlGgVTegDaBZHQIeOCZDzAet1fZQoaAZoCWgPQwiVYkfjUNdIQJSGlFKUaBVN6ANoFkdAh5I2v0RODnV9lChoBmgJaA9DCPYjRWRYiFtAlIaUUpRoFU3oA2gWR0CHnF0kGA09dX2UKGgGaAloD0MI+kMzT65BX0CUhpRSlGgVTegDaBZHQIede1lXiit1fZQoaAZoCWgPQwj99+C1S8pbQJSGlFKUaBVN6ANoFkdAh6LcghbGFXV9lChoBmgJaA9DCP0zg/jA8V9AlIaUUpRoFU3oA2gWR0CHvB8/lhgFdX2UKGgGaAloD0MISFFn7iH9T0CUhpRSlGgVS7RoFkdAh72MpPRAr3V9lChoBmgJaA9DCHgLJCh+jlNAlIaUUpRoFU3oA2gWR0CHv5AKOT7mdX2UKGgGaAloD0MIwHgGDf18U0CUhpRSlGgVTegDaBZHQIfESwhW5pd1fZQoaAZoCWgPQwhlwi/18+ViQJSGlFKUaBVN6ANoFkdAiLo4r8R+SnV9lChoBmgJaA9DCMDtCRLbalxAlIaUUpRoFU3oA2gWR0CIvM2zfJmvdX2UKGgGaAloD0MIwktw6gMAV0CUhpRSlGgVTegDaBZHQIi/aeyzHCJ1fZQoaAZoCWgPQwielbTiG+BhQJSGlFKUaBVN6ANoFkdAiMgLiEQGwHV9lChoBmgJaA9DCK+xS1TvNWJAlIaUUpRoFU3oA2gWR0CI2h5Rjz7NdX2UKGgGaAloD0MI8db5t0vyYkCUhpRSlGgVTegDaBZHQIjlG3z+WGB1fZQoaAZoCWgPQwgVxhaCHI9YQJSGlFKUaBVN6ANoFkdAiOoOdGy5Z3V9lChoBmgJaA9DCINRSZ2ALF5AlIaUUpRoFU3oA2gWR0CI64CjDbaidX2UKGgGaAloD0MI7s1vmGg5XkCUhpRSlGgVTegDaBZHQIjubCtRvWJ1fZQoaAZoCWgPQwibkUHuItNgQJSGlFKUaBVN6ANoFkdAiPdTJIUah3V9lChoBmgJaA9DCBSX4xUIWmBAlIaUUpRoFU3oA2gWR0CI/LxLCemOdX2UKGgGaAloD0MIX7LxYIsZYECUhpRSlGgVTegDaBZHQIkHLteD3/R1fZQoaAZoCWgPQwhN+RBUje1hQJSGlFKUaBVN6ANoFkdAiQfZ0Syt3nV9lChoBmgJaA9DCKK3eHjPlGRAlIaUUpRoFU3oA2gWR0CJEgAlOXVtdX2UKGgGaAloD0MIvfxOkxlQYECUhpRSlGgVTegDaBZHQIkdDBZZB9l1fZQoaAZoCWgPQwgg8SvWcNtfQJSGlFKUaBVN6ANoFkdAiScwHiWE9XV9lChoBmgJaA9DCNHLKJZbxlFAlIaUUpRoFU3oA2gWR0CJKdGvOhTPdX2UKGgGaAloD0MIenJNgUyuZECUhpRSlGgVTegDaBZHQIk5RM6BAfN1fZQoaAZoCWgPQwiFJR5QNoVYQJSGlFKUaBVN6ANoFkdAiTv2DYh+v3V9lChoBmgJaA9DCJxOstXlUGNAlIaUUpRoFU3oA2gWR0CJPSqEvkBCdX2UKGgGaAloD0MIxcn9DkWcWUCUhpRSlGgVTegDaBZHQIlCqaRZED11fZQoaAZoCWgPQwjb+uk/a8RGQJSGlFKUaBVL2WgWR0CJQrBKtga4dX2UKGgGaAloD0MIe0/ltCcOZECUhpRSlGgVTegDaBZHQIoz/keZG8V1fZQoaAZoCWgPQwi05zI1ialgQJSGlFKUaBVN6ANoFkdAijjkWykbgnV9lChoBmgJaA9DCN/hdmhYf1xAlIaUUpRoFU3oA2gWR0CKOf57gKnfdX2UKGgGaAloD0MIeH3mrE8PX0CUhpRSlGgVTegDaBZHQIpGejVQQ+V1fZQoaAZoCWgPQwhEUgslkzJhQJSGlFKUaBVN6ANoFkdAilLJBomG/XV9lChoBmgJaA9DCOBm8WJh/lBAlIaUUpRoFU3oA2gWR0CKU9IFNcnmdX2UKGgGaAloD0MI7FBNSdanYkCUhpRSlGgVTegDaBZHQIpYhxtHhCN1fZQoaAZoCWgPQwgqHaz/c9w7QJSGlFKUaBVLuGgWR0CKX0S4e9zwdX2UKGgGaAloD0MI+IkD6PfxXkCUhpRSlGgVTegDaBZHQIpwQatLcsV1fZQoaAZoCWgPQwgFM6ZgDehnQJSGlFKUaBVN6ANoFkdAinGn4Glhw3V9lChoBmgJaA9DCDnWxW20N2FAlIaUUpRoFU3oA2gWR0CKc5ASFoL5dX2UKGgGaAloD0MIsI9OXfnZYECUhpRSlGgVTegDaBZHQIp4Q71ZkkN1fZQoaAZoCWgPQwjHgsKgTKVjQJSGlFKUaBVN6ANoFkdAioLSN4qwyXV9lChoBmgJaA9DCAKetHDZe2FAlIaUUpRoFU3oA2gWR0CKhXvRZ2ZBdX2UKGgGaAloD0MI2h1SDJDeYkCUhpRSlGgVTegDaBZHQIqIGSntOVR1fZQoaAZoCWgPQwgom3KFdxtjQJSGlFKUaBVN6ANoFkdAipCljNIK+nV9lChoBmgJaA9DCFqEYitohFNAlIaUUpRoFUvMaBZHQIqhcJ6Y3Nt1fZQoaAZoCWgPQwgMIlLTrmVgQJSGlFKUaBVN6ANoFkdAiqJYEnssx3V9lChoBmgJaA9DCMe7I2M1FmBAlIaUUpRoFU3oA2gWR0CKrLP3SKFadX2UKGgGaAloD0MIlL2lnC/VYECUhpRSlGgVTegDaBZHQIqxXDk2gnN1fZQoaAZoCWgPQwjn4JnQpBFgQJSGlFKUaBVN6ANoFkdAirKdCNS62HV9lChoBmgJaA9DCD5BYrt7YWBAlIaUUpRoFU3oA2gWR0CKtVFn7HhkdX2UKGgGaAloD0MIda+T+jLkZECUhpRSlGgVTegDaBZHQIq9r3RG+bp1fZQoaAZoCWgPQwhqoWRyai5jQJSGlFKUaBVN6ANoFkdAi62sxfv4NHV9lChoBmgJaA9DCDXSUnk7qlxAlIaUUpRoFU3oA2gWR0CLt7NMXaakdX2UKGgGaAloD0MI1h9hGDCqZECUhpRSlGgVTegDaBZHQIu4UY64lQd1fZQoaAZoCWgPQwihv9AjRvlGQJSGlFKUaBVLy2gWR0CLuMtqYZ2qdX2UKGgGaAloD0MIXD0nve+7ZECUhpRSlGgVTegDaBZHQIvMq7VawEB1fZQoaAZoCWgPQwhHOC140elhQJSGlFKUaBVN6ANoFkdAi9aKQRwqAnV9lChoBmgJaA9DCPW6RWCsgmJAlIaUUpRoFU3oA2gWR0CL2UY2Kl54dX2UKGgGaAloD0MIIlLTLiZFY0CUhpRSlGgVTegDaBZHQIvo+twJgLJ1fZQoaAZoCWgPQwgsvMtFfLNgQJSGlFKUaBVN6ANoFkdAi+vZKnNxEXV9lChoBmgJaA9DCAIR4srZc2FAlIaUUpRoFU3oA2gWR0CL7QZP2wmmdX2UKGgGaAloD0MI965BX/oVYUCUhpRSlGgVTegDaBZHQIvy0G5c1O11fZQoaAZoCWgPQwhIpG38iflfQJSGlFKUaBVN6ANoFkdAi/LW/rSmZXV9lChoBmgJaA9DCIeHMH6afWFAlIaUUpRoFU3oA2gWR0CL+n/FR51OdX2UKGgGaAloD0MIRbx1/u0HZECUhpRSlGgVTegDaBZHQIv//fTCtRx1fZQoaAZoCWgPQwhQyM7b2I1cQJSGlFKUaBVN6ANoFkdAjA3u8kD6nHV9lChoBmgJaA9DCEAVN24xpF1AlIaUUpRoFU3oA2gWR0CMGvqNZNfxdX2UKGgGaAloD0MIRX9o5skmVECUhpRSlGgVS5NoFkdAjBtXMyJsPHV9lChoBmgJaA9DCBztuOF3cGJAlIaUUpRoFU3oA2gWR0CMHAxHoX9BdX2UKGgGaAloD0MIEYsYdhhMXUCUhpRSlGgVTegDaBZHQIwg5IOH3111fZQoaAZoCWgPQwggfv578JJkQJSGlFKUaBVN6ANoFkdAjCe5rYXfqHV9lChoBmgJaA9DCG3GaYgqckRAlIaUUpRoFUvZaBZHQIwwG9zwMH91fZQoaAZoCWgPQwinIarw50RkQJSGlFKUaBVN6ANoFkdAjDhS619fC3V9lChoBmgJaA9DCJKzsKedLGJAlIaUUpRoFU3oA2gWR0CMOcGgzxgBdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 210, "n_steps": 656, "gamma": 0.997, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8d3eb171f6af8017b4cabe235f200560c7959dcfe9362c6589abf5b0d19395a
|
3 |
+
size 163896
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 256.3958896734528, "std_reward": 21.370762435078465, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-12T04:11:31.266729"}
|