kingabzpro commited on
Commit
4ecb4b8
1 Parent(s): 59ff150

Improved Hyperparmeters v2-best

Browse files
Moonman-Lunar-Lander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:304a3397d029255d10867095ad80c1c7579ce0b3b686aebe363931b8a33afe4e
3
- size 144099
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2679d87ae04c868bb5323d7581db3e02f6c3b32d2528d9e6776fc6006ddbf72
3
+ size 144107
Moonman-Lunar-Lander-v2/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f06d9ef5170>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f06d9ef5200>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f06d9ef5290>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f06d9ef5320>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f06d9ef53b0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f06d9ef5440>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f06d9ef54d0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f06d9ef5560>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f06d9ef55f0>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f06d9ef5680>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f06d9ef5710>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f06d9f37ab0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -42,12 +42,12 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 512000,
46
  "_total_timesteps": 500000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1652273847.1759872,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOEQb2B2OU96WMQPrUcjL55wNw8tizxvAAAAAAAAAAAZjY8O+X9VT59cOU74iheviu2iTw2Wgq8AAAAAAAAAAAzom49KVAPulpRkDqtHZo1uiNBOiRDpLkAAIA/AACAP81oKrykk2084ckLPisiNr44D8k9zbwzvQAAAAAAAAAA8/v2PXu2v7rucdI5pES/tiaNNbzza/24AACAPwAAgD+mZ6E9KZh1ujBUhzWHiaYwGftbO06OubQAAIA/AACAP2YWETt7soq6ohmnuxEIQDUE5Ya4nkLAOgAAgD8AAIA/M2eyPOz0pT5vvBa9QpukvptpzTsTY1k8AAAAAAAAAAAz1hQ9e26zul7FCTqEZ4a1pan8uVwxHbkAAIA/AACAPzO4uDxceyG6ZklHuxwvD7bgcQw6ncBoOgAAgD8AAIA/M+eyPVxbULqLope7auX2OYqJvjpOsIy6AACAPwAAgD+aFlY9XOtxuqcBtTpeRi02lB9DOl3nz7kAAIA/AACAPxPMXr7E57g+t8A/PiSKlb5ibQ6+lt1KPQAAAAAAAAAATVmKPVIQqbm4InK5kTvRtPJrYzvulpA4AACAPwAAgD/awdU95JJlP2hQDTzDzfC+1FgzPh5ZCLsAAAAAAAAAAAClJT1sKve7D1gEPI1vKzyJhF29DL4UPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,24 +66,24 @@
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.02400000000000002,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4pANpIvAZUCUhpRSlIwBbJRN6AOMAXSUR0Cj8UsMZxaQdX2UKGgGaAloD0MI0qsBSsMlZ0CUhpRSlGgVTegDaBZHQKPymowVTJh1fZQoaAZoCWgPQwgZj1IJzzxvQJSGlFKUaBVNzQJoFkdAo/Raf4AS4HV9lChoBmgJaA9DCDgvTnw11WhAlIaUUpRoFU3oA2gWR0Cj9cxcmjTKdX2UKGgGaAloD0MIaB8r+G3oZECUhpRSlGgVTegDaBZHQKP2XvOQhfV1fZQoaAZoCWgPQwhnSBXFK/JyQJSGlFKUaBVNIwFoFkdAo/bpKraM73V9lChoBmgJaA9DCM+8HHbfFWVAlIaUUpRoFU3oA2gWR0Cj+BgVXV9XdX2UKGgGaAloD0MIHeVgNgFrZkCUhpRSlGgVTegDaBZHQKP4gPlMh5h1fZQoaAZoCWgPQwhOfSB558VVQJSGlFKUaBVLm2gWR0Cj+cI5ggHNdX2UKGgGaAloD0MIlE4kmOrsY0CUhpRSlGgVTegDaBZHQKP6g+otL+R1fZQoaAZoCWgPQwhK7xtfe3xvQJSGlFKUaBVNgwFoFkdAo/uE4tHx0HV9lChoBmgJaA9DCD4JbM5BwHBAlIaUUpRoFU2PA2gWR0Cj/LPHtF8YdX2UKGgGaAloD0MIA0AVNy5DcUCUhpRSlGgVTWkCaBZHQKP87nBciW51fZQoaAZoCWgPQwi3Yn/ZPQdkQJSGlFKUaBVN6ANoFkdApAETWAf+0nV9lChoBmgJaA9DCK358ZcWIW1AlIaUUpRoFU31AWgWR0CkAbE/8l5XdX2UKGgGaAloD0MIhSaJJWVZcECUhpRSlGgVTZUBaBZHQKQDbS0jTrp1fZQoaAZoCWgPQwgCg6RPK7NsQJSGlFKUaBVNVwNoFkdApATbb+Lm63V9lChoBmgJaA9DCJp8s80N/GNAlIaUUpRoFU3oA2gWR0CkBVykCV8kdX2UKGgGaAloD0MIOPdXj3uhZ0CUhpRSlGgVTegDaBZHQKQFjyeZof11fZQoaAZoCWgPQwhaSSu+oQtkQJSGlFKUaBVN6ANoFkdApIP5zJZGKHV9lChoBmgJaA9DCOvkDMWdHXBAlIaUUpRoFU2XA2gWR0CkiKtz8xbjdX2UKGgGaAloD0MIDrxa7ozAcECUhpRSlGgVTQYDaBZHQKSJCjCYTkB1fZQoaAZoCWgPQwjQmbSpunZyQJSGlFKUaBVN4gFoFkdApI7I6IWP93V9lChoBmgJaA9DCPtz0ZDxMWFAlIaUUpRoFU3oA2gWR0Ckj772L5ymdX2UKGgGaAloD0MITMecZ2yEaECUhpRSlGgVTegDaBZHQKSR+XHim2t1fZQoaAZoCWgPQwie0VYlEVtiQJSGlFKUaBVN6ANoFkdApJQPy08eS3V9lChoBmgJaA9DCI22KoksdnJAlIaUUpRoFU1oAmgWR0CklLkFnqVydX2UKGgGaAloD0MIhjlBmxw6RECUhpRSlGgVS59oFkdApJTYNkOI7HV9lChoBmgJaA9DCNXrFoGxAmlAlIaUUpRoFU3oA2gWR0CklPawdKdydX2UKGgGaAloD0MIvhb03hjDcECUhpRSlGgVTaIBaBZHQKSWA2jO9nN1fZQoaAZoCWgPQwiNCTGX1DhjQJSGlFKUaBVN6ANoFkdApJYK55JK8XV9lChoBmgJaA9DCFluaTWk12NAlIaUUpRoFU3oA2gWR0CklygB91EFdX2UKGgGaAloD0MIpOTVOQaOZUCUhpRSlGgVTegDaBZHQKSXYfSx7iR1fZQoaAZoCWgPQwiUFi6rsElDQJSGlFKUaBVLimgWR0CkmEnYg7o0dX2UKGgGaAloD0MIO6kvS7tCZECUhpRSlGgVTegDaBZHQKUZLfWtlqd1fZQoaAZoCWgPQwgw16IFaPpnQJSGlFKUaBVN6ANoFkdApRnBfdAPd3V9lChoBmgJaA9DCJI+raJ/NnNAlIaUUpRoFU0kAWgWR0ClG52IoE0SdX2UKGgGaAloD0MIUoAomLH5Y0CUhpRSlGgVTegDaBZHQKUdbltj0+V1fZQoaAZoCWgPQwhXem02Vg1gQJSGlFKUaBVN6ANoFkdApR2fiT+vQnV9lChoBmgJaA9DCOdQhqqYpWRAlIaUUpRoFU3oA2gWR0ClH4A/s3Q2dX2UKGgGaAloD0MISQ7Y1WRSZkCUhpRSlGgVTegDaBZHQKUkMeZG8VZ1fZQoaAZoCWgPQwg9SE+RA4RxQJSGlFKUaBVNgQJoFkdApSidZDArQXV9lChoBmgJaA9DCEkrvqFwUGVAlIaUUpRoFU3oA2gWR0ClKadZA6dUdX2UKGgGaAloD0MI/G1PkFiYYkCUhpRSlGgVTegDaBZHQKUsii8nNPh1fZQoaAZoCWgPQwibN04KcyBhQJSGlFKUaBVN6ANoFkdApS5/UnXumnV9lChoBmgJaA9DCGvXhLRGqWVAlIaUUpRoFU3oA2gWR0ClLySAxzq9dX2UKGgGaAloD0MIkElGzkKDZUCUhpRSlGgVTegDaBZHQKUvXtw71Zl1fZQoaAZoCWgPQwhi9rLtNONkQJSGlFKUaBVN6ANoFkdApTBr28IzFnV9lChoBmgJaA9DCEEN38K6ZXFAlIaUUpRoFU2lAmgWR0ClrXa6z3RHdX2UKGgGaAloD0MIcOtunupJZkCUhpRSlGgVTegDaBZHQKWt3dZ7ojh1fZQoaAZoCWgPQwg3+pgPCIhlQJSGlFKUaBVN6ANoFkdApa4fSpiqhnV9lChoBmgJaA9DCMfXnlnSl3FAlIaUUpRoFU0PA2gWR0ClrpoB7u2JdX2UKGgGaAloD0MICMkCJvDpaECUhpRSlGgVTegDaBZHQKWyLOqNp/R1fZQoaAZoCWgPQwjdtYR8UMppQJSGlFKUaBVN6ANoFkdApbLPJ7sv7HV9lChoBmgJaA9DCEt1AS/z8nBAlIaUUpRoFU1ZAWgWR0CltVI7/4qPdX2UKGgGaAloD0MIkGYsmo6acUCUhpRSlGgVTTQBaBZHQKW2bHww0wd1fZQoaAZoCWgPQwiXdJSDWT5jQJSGlFKUaBVN6ANoFkdApbchwhnrZHV9lChoBmgJaA9DCC4dc54xD2VAlIaUUpRoFU3oA2gWR0CluTzYVZcLdX2UKGgGaAloD0MI11HVBFHiZUCUhpRSlGgVTegDaBZHQKW+YBpYcNp1fZQoaAZoCWgPQwgdAdwsnpRyQJSGlFKUaBVNXgFoFkdApcJi8an753V9lChoBmgJaA9DCHjuPVzyL2ZAlIaUUpRoFU3oA2gWR0ClwzcAzYVZdX2UKGgGaAloD0MIixagbTW8Z0CUhpRSlGgVTegDaBZHQKXEQ1eBxxV1fZQoaAZoCWgPQwiKA+j3/W1NQJSGlFKUaBVLsmgWR0ClxFOkUKzBdX2UKGgGaAloD0MILVvri4RrZECUhpRSlGgVTegDaBZHQKZFE+2VmjF1fZQoaAZoCWgPQwjdRZiiXDxiQJSGlFKUaBVN6ANoFkdApkcdPYWcjXV9lChoBmgJaA9DCHxgx3+Bs2VAlIaUUpRoFU3oA2gWR0CmR8XcYZVGdX2UKGgGaAloD0MIf4eiQB+vY0CUhpRSlGgVTegDaBZHQKZJLA6+36R1fZQoaAZoCWgPQwhGzy10pRZhQJSGlFKUaBVN6ANoFkdApkqsIiTt9nV9lChoBmgJaA9DCINStHKvRWlAlIaUUpRoFU3oA2gWR0CmSvUaqCHzdX2UKGgGaAloD0MINIEiFjHOZECUhpRSlGgVTegDaBZHQKZLir1/UfB1fZQoaAZoCWgPQwiYUSy3tMhKQJSGlFKUaBVLtWgWR0CmTVWNm16WdX2UKGgGaAloD0MI9x4uOe7CZUCUhpRSlGgVTegDaBZHQKZPjvKlpGp1fZQoaAZoCWgPQwgogGJkSR5hQJSGlFKUaBVN6ANoFkdAplA6OzY29HV9lChoBmgJaA9DCPKaV3VWwGNAlIaUUpRoFU3oA2gWR0CmUp5u63AmdX2UKGgGaAloD0MIgT/8/PeGTECUhpRSlGgVS7FoFkdAplLF6LOzIHV9lChoBmgJaA9DCPPK9baZKGNAlIaUUpRoFU3oA2gWR0CmU6I6r/83dX2UKGgGaAloD0MIzSIUW0H7YECUhpRSlGgVTegDaBZHQKZWSs90Rvp1fZQoaAZoCWgPQwhTzaylgOhMQJSGlFKUaBVLyGgWR0CmWNAvtdAxdX2UKGgGaAloD0MImNwoslY+YUCUhpRSlGgVTegDaBZHQKbbU7J4jbB1fZQoaAZoCWgPQwirIAa6dglmQJSGlFKUaBVN6ANoFkdAptwjv9cbBHV9lChoBmgJaA9DCHiZYaPs5XBAlIaUUpRoFU0+A2gWR0Cm3P0AtFrmdX2UKGgGaAloD0MIlgfpKbKxcECUhpRSlGgVTVABaBZHQKbdILBsQ/Z1fZQoaAZoCWgPQwgN3lflwoViQJSGlFKUaBVN6ANoFkdApt07VrhzeXV9lChoBmgJaA9DCAPpYtPKoGBAlIaUUpRoFU3oA2gWR0Cm3Uov8IiUdX2UKGgGaAloD0MIisqGNZU0bUCUhpRSlGgVTSYBaBZHQKbeIhje9Bd1fZQoaAZoCWgPQwgbutkfKPtuQJSGlFKUaBVNeQJoFkdApt9+KXOW0XV9lChoBmgJaA9DCLKbGf1oz2RAlIaUUpRoFU3oA2gWR0Cm36itA9mpdX2UKGgGaAloD0MI6E8b1WltaECUhpRSlGgVTegDaBZHQKbi4IO6NER1fZQoaAZoCWgPQwiZnxuaMnNjQJSGlFKUaBVN6ANoFkdApuQwbEP1+XV9lChoBmgJaA9DCP9YiA6BM19AlIaUUpRoFU3oA2gWR0Cm5HBMSK3vdX2UKGgGaAloD0MI8ppXdVaFZkCUhpRSlGgVTegDaBZHQKbk8JRfnfV1fZQoaAZoCWgPQwiM17yqsxdSQJSGlFKUaBVL22gWR0Cm5TOpbUw0dX2UKGgGaAloD0MIX7Uy4dfWcUCUhpRSlGgVTa4BaBZHQKbmrtUn5SF1fZQoaAZoCWgPQwj5oGezqjZwQJSGlFKUaBVNTgFoFkdApugOxdIGyHV9lChoBmgJaA9DCMoxWdz/425AlIaUUpRoFU2EAWgWR0Cm6A2uPmxMdX2UKGgGaAloD0MIujDSi9p0Y0CUhpRSlGgVTegDaBZHQKboWEIw/Ph1fZQoaAZoCWgPQwjuJvim6eJvQJSGlFKUaBVN3AFoFkdApulPDR+jM3V9lChoBmgJaA9DCCGunL0z+k1AlIaUUpRoFUvIaBZHQKbqKcy31Bd1fZQoaAZoCWgPQwhszOuIQ0hjQJSGlFKUaBVN6ANoFkdApuqis8xKx3V9lChoBmgJaA9DCH3mrE+5q2JAlIaUUpRoFU3oA2gWR0Cm62j9GZuydWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 400,
79
- "n_steps": 800,
80
- "gamma": 0.997,
81
  "gae_lambda": 0.98,
82
  "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
- "batch_size": 16,
86
- "n_epochs": 10,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
  ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f90e95bb440>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f90e95bb4d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f90e95bb560>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f90e95bb5f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f90e95bb680>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f90e95bb710>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f90e95bb7a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f90e95bb830>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f90e95bb8c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f90e95bb950>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f90e95bb9e0>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f90e95fed20>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 503040,
46
  "_total_timesteps": 500000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1652279651.7453177,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICzZj5nx2k/LrMNPq5nl76I6VM+Abk6vQAAAAAAAAAAgJY0PVLw77m+IAe70aXEtb6CPzvzBBw6AACAPwAAgD+aiPm8rtGruha2Ybu6KSq2CT59upRmgToAAIA/AACAP8Cx6T1UAas/CqEYP691tb5Wnec9BTx4PgAAAAAAAAAAZtbsujYSrz8ijS+911Wpvoy/qju9h388AAAAAAAAAACacVa9KcgYujtGHbzu+OQ4IFQnOlXVTbgAAIA/AACAPxMQeL5cwIA/iLtgvvwjir7cYWa+ULbHPQAAAAAAAAAAMxCcPiQQEz9m5Di+XAmsvm8c9DyIIBs8AAAAAAAAAABzNSu+qjuYP7IpR77AXpe+ELZ0voORcD0AAAAAAAAAACadHb62owO8TR4HuzK23LiZ33c9ZS0qOgAAgD8AAIA/evqCPhsCcj/DrOG9boR9viu3GT6RogO+AAAAAAAAAAAzH5A8w+1cupo2rbpUCCe2y293O3otyDkAAIA/AACAP02Sij3DCWW6aLTXO3YXj7UrVae5anh+tAAAgD8AAIA/gP4mvcOpVbrOZoc7XxpnOKYwHrqmZfK3AACAPwAAgD+aVgK9CkdmuXWSg7qXkzm18XFMuymbnDkAAIA/AACAP81yQ7wpiF666FbtO1d4P7ZTG1W5fRwytQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.006080000000000085,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICFkWTPyca0CUhpRSlIwBbJRNXwGMAXSUR0CTanD9wWFfdX2UKGgGaAloD0MIPfIHA0/5cUCUhpRSlGgVTUEBaBZHQJNqti8WbgF1fZQoaAZoCWgPQwioqtBA7GxwQJSGlFKUaBVNVQFoFkdAk2sWF8G9pXV9lChoBmgJaA9DCMPzUrEx8m5AlIaUUpRoFU0iAWgWR0CTbBHvMKTjdX2UKGgGaAloD0MIETY8vVLrcECUhpRSlGgVTWoBaBZHQJPAuDVYp2F1fZQoaAZoCWgPQwhBmrFoOuhtQJSGlFKUaBVNMAFoFkdAk8KOn/DLsHV9lChoBmgJaA9DCKhy2lNyyGtAlIaUUpRoFU0tAWgWR0CTw17p3X7MdX2UKGgGaAloD0MIBMk7h/J2cECUhpRSlGgVTUABaBZHQJPFvFNtZV51fZQoaAZoCWgPQwiEYitoWmRtQJSGlFKUaBVNJAFoFkdAk8XKZx7zCnV9lChoBmgJaA9DCAxbs5VXxnBAlIaUUpRoFU1DAWgWR0CTyR5qubI+dX2UKGgGaAloD0MI4gD6fX9eb0CUhpRSlGgVTWoBaBZHQJPJPEdeY2N1fZQoaAZoCWgPQwg8MevFEM5wQJSGlFKUaBVNUwFoFkdAk8leeFtbcHV9lChoBmgJaA9DCJFDxM1pqnBAlIaUUpRoFU0sAWgWR0CTyaAGB4D+dX2UKGgGaAloD0MI0opvKHzAbUCUhpRSlGgVTTIBaBZHQJPLG89Oh011fZQoaAZoCWgPQwiRup195RJvQJSGlFKUaBVNSAFoFkdAk8uIXTEzf3V9lChoBmgJaA9DCNuK/WV3a2tAlIaUUpRoFU1sAWgWR0CTzBWXkYGddX2UKGgGaAloD0MIyAbSxaZ0bkCUhpRSlGgVTZwBaBZHQJPNhLamGdt1fZQoaAZoCWgPQwh3EDtTaJpsQJSGlFKUaBVNYAFoFkdAk83SBkI5YHV9lChoBmgJaA9DCJgVinS/MHBAlIaUUpRoFU1UAWgWR0CTzo78ejmCdX2UKGgGaAloD0MI2bW93VJVcECUhpRSlGgVTYsBaBZHQJPO49t/Fzd1fZQoaAZoCWgPQwhtxf6ye/RvQJSGlFKUaBVNQgFoFkdAk8/oAn2IwnV9lChoBmgJaA9DCOntz0XDRHFAlIaUUpRoFU1cAWgWR0CT0vPX05EMdX2UKGgGaAloD0MIXFfMCG86bUCUhpRSlGgVTVgBaBZHQJPTrZCfHxV1fZQoaAZoCWgPQwgkD0QWaRNxQJSGlFKUaBVNRgFoFkdAk9VAMpgCwXV9lChoBmgJaA9DCBdJu9GHTnFAlIaUUpRoFU0hAWgWR0CT1umSQo1DdX2UKGgGaAloD0MIOQ8nMB0+cECUhpRSlGgVTTIBaBZHQJPXZEKE3851fZQoaAZoCWgPQwiuZp3x/VVyQJSGlFKUaBVNFwFoFkdAk9fgIhQm/nV9lChoBmgJaA9DCCdnKO54rG5AlIaUUpRoFU07AWgWR0CT1/RlHz6KdX2UKGgGaAloD0MIrvTabOwKcUCUhpRSlGgVTSYBaBZHQJPY/AoG6f91fZQoaAZoCWgPQwgZdhiT/thyQJSGlFKUaBVNLwFoFkdAk9niRr8BMnV9lChoBmgJaA9DCK358ZeWmG1AlIaUUpRoFU27AWgWR0CT2tLidat+dX2UKGgGaAloD0MIQ+T09Xx8bkCUhpRSlGgVTT4BaBZHQJPb2VgQYk51fZQoaAZoCWgPQwgIISBfws5xQJSGlFKUaBVNNQFoFkdAk9yCV8kUsXV9lChoBmgJaA9DCNVBXg9mV3BAlIaUUpRoFU1NAWgWR0CT3MWPLgXNdX2UKGgGaAloD0MIRnpRu18cckCUhpRSlGgVTcoBaBZHQJQ4nFdcB2h1fZQoaAZoCWgPQwip2m6CL7ZxQJSGlFKUaBVNqAFoFkdAlEMWMju8b3V9lChoBmgJaA9DCPd0dcci4XBAlIaUUpRoFU21AWgWR0CURBJYkmhNdX2UKGgGaAloD0MIesTouQW9cUCUhpRSlGgVTWkCaBZHQJRKdbLU1AJ1fZQoaAZoCWgPQwgrNBDLZvBMQJSGlFKUaBVN6ANoFkdAlFbvhVENOXV9lChoBmgJaA9DCHhGW5UEynBAlIaUUpRoFU2CAmgWR0CUVzZbY9PldX2UKGgGaAloD0MIbjXrjO8ncUCUhpRSlGgVTREDaBZHQJRYRog3cYZ1fZQoaAZoCWgPQwgeT8sP3FBwQJSGlFKUaBVNhgJoFkdAlFkD15B1LnV9lChoBmgJaA9DCHfWbrvQkHFAlIaUUpRoFU24AWgWR0CUWhCjDbaidX2UKGgGaAloD0MIqmOV0jOaZECUhpRSlGgVTegDaBZHQJSxrtlZowp1fZQoaAZoCWgPQwjIs8u3PpJBQJSGlFKUaBVL8GgWR0CUuXgsK9f1dX2UKGgGaAloD0MIOBQ+Wwc6YUCUhpRSlGgVTegDaBZHQJS7LB0p3HJ1fZQoaAZoCWgPQwh/pfPhWelmQJSGlFKUaBVN6ANoFkdAlL15iqhlDnV9lChoBmgJaA9DCEKWBRP/gWVAlIaUUpRoFU3oA2gWR0CUvib6xgRcdX2UKGgGaAloD0MIIZG28SfOY0CUhpRSlGgVTegDaBZHQJTAchib2Dh1fZQoaAZoCWgPQwhHjQkxl7RsQJSGlFKUaBVNXwFoFkdAlMFDcM3IdXV9lChoBmgJaA9DCDVdT3RdXGJAlIaUUpRoFU3oA2gWR0CUxIQN0/4ZdX2UKGgGaAloD0MIk2+2uTHjYECUhpRSlGgVTegDaBZHQJTFd/BnBcl1fZQoaAZoCWgPQwjcZFQZxiZnQJSGlFKUaBVN6ANoFkdAlMXVYhdMTXV9lChoBmgJaA9DCBu7RPVWnnBAlIaUUpRoFU1tAmgWR0CUx151eSjhdX2UKGgGaAloD0MIBvLs8q2tUUCUhpRSlGgVS+doFkdAlNKl7Qb++HV9lChoBmgJaA9DCDEjvD0IEFxAlIaUUpRoFU3oA2gWR0CVLTSHM2WIdX2UKGgGaAloD0MI/b/qyBGoZkCUhpRSlGgVTegDaBZHQJUuJGEwnIB1fZQoaAZoCWgPQwioj8AffupbQJSGlFKUaBVN6ANoFkdAlUQcbFS88XV9lChoBmgJaA9DCKJ71jXaiGNAlIaUUpRoFU3oA2gWR0CVRSEbYK6XdX2UKGgGaAloD0MIqRYRxWQrYECUhpRSlGgVTegDaBZHQJVGbSpiqhl1fZQoaAZoCWgPQwhss7ESc5hjQJSGlFKUaBVN6ANoFkdAlUycY/FBIHV9lChoBmgJaA9DCF9f61Ij5F1AlIaUUpRoFU3oA2gWR0CVVmr56+nJdX2UKGgGaAloD0MIMnTsoJKxY0CUhpRSlGgVTegDaBZHQJVYY690zTF1fZQoaAZoCWgPQwi8QbRWtPheQJSGlFKUaBVN6ANoFkdAlVsRIjGDMHV9lChoBmgJaA9DCMh5/x+nSWhAlIaUUpRoFU3oA2gWR0CVW8okiUxEdX2UKGgGaAloD0MI24toOybEYUCUhpRSlGgVTegDaBZHQJVeJUZNwit1fZQoaAZoCWgPQwifkJ23sexfQJSGlFKUaBVN6ANoFkdAlV8LUoa1kXV9lChoBmgJaA9DCHpuoSuRxWBAlIaUUpRoFU3oA2gWR0CVtm7CiyprdX2UKGgGaAloD0MIER0CRwITZkCUhpRSlGgVTegDaBZHQJW23lGPPs11fZQoaAZoCWgPQwin5nKDobdiQJSGlFKUaBVN6ANoFkdAlbiintOVPnV9lChoBmgJaA9DCHEbDeCtnmNAlIaUUpRoFU3oA2gWR0CVxPi+tbLVdX2UKGgGaAloD0MIhc0AF+QOYkCUhpRSlGgVTegDaBZHQJXNGwqy4Wl1fZQoaAZoCWgPQwhpjUEnBAdjQJSGlFKUaBVN6ANoFkdAlc4ER3/xUnV9lChoBmgJaA9DCE2+2ebG7mRAlIaUUpRoFU3oA2gWR0CV4svVmSQpdX2UKGgGaAloD0MI5BQdyWUhZUCUhpRSlGgVTegDaBZHQJXjvcsUZel1fZQoaAZoCWgPQwiXdJSD2VxhQJSGlFKUaBVN6ANoFkdAleUF4HHFP3V9lChoBmgJaA9DCHcujPQivGRAlIaUUpRoFU3oA2gWR0CWPVDL8rI6dX2UKGgGaAloD0MIY+3vbA+EYECUhpRSlGgVTegDaBZHQJZGur/82rJ1fZQoaAZoCWgPQwi13JkJBiliQJSGlFKUaBVN6ANoFkdAlkig9eQdS3V9lChoBmgJaA9DCK3ddqG5TjZAlIaUUpRoFUv9aBZHQJZLKL4vexh1fZQoaAZoCWgPQwh/vi1YqltgQJSGlFKUaBVN6ANoFkdAlkstmHxjKHV9lChoBmgJaA9DCGyVYHE4NWZAlIaUUpRoFU3oA2gWR0CWS91fE4vOdX2UKGgGaAloD0MIoWXdP5bqYECUhpRSlGgVTegDaBZHQJZOMKMNtqJ1fZQoaAZoCWgPQwhCQpQv6JhkQJSGlFKUaBVN6ANoFkdAlk8JBX0Xg3V9lChoBmgJaA9DCJHRAUnYaUdAlIaUUpRoFU0FAWgWR0CWUMU+9rXUdX2UKGgGaAloD0MIi8HDtG8oZkCUhpRSlGgVTegDaBZHQJZTRiYsunN1fZQoaAZoCWgPQwhJL2r3qz9jQJSGlFKUaBVN6ANoFkdAllOqifxtpHV9lChoBmgJaA9DCCkg7X8AvGNAlIaUUpRoFU3oA2gWR0CWVTYW+GoKdX2UKGgGaAloD0MIuoRDb/G0YkCUhpRSlGgVTegDaBZHQJZhDps41gp1fZQoaAZoCWgPQwjZdtoakcFiQJSGlFKUaBVN6ANoFkdAlrpJ2hZha3V9lChoBmgJaA9DCIgP7PgvPWRAlIaUUpRoFU3oA2gWR0CWu0pnpSrHdX2UKGgGaAloD0MIDVGFP0OiZUCUhpRSlGgVTegDaBZHQJbSjBSDRMN1fZQoaAZoCWgPQwhaD18mii9jQJSGlFKUaBVN6ANoFkdAltOPqoqCpXV9lChoBmgJaA9DCC2Y+KOo/WNAlIaUUpRoFU3oA2gWR0CW51Mju8brdX2UKGgGaAloD0MIWkdVE8S0Y0CUhpRSlGgVTegDaBZHQJbpyFi8Wbh1fZQoaAZoCWgPQwjJx+4CpZhkQJSGlFKUaBVN6ANoFkdAluyrn5i3HHV9lChoBmgJaA9DCNqM0xBVNGVAlIaUUpRoFU3oA2gWR0CW7LIOYplSdX2UKGgGaAloD0MIUkSGVTxfY0CUhpRSlGgVTegDaBZHQJbtiOjqOcV1fZQoaAZoCWgPQwg75dGNsDlmQJSGlFKUaBVN6ANoFkdAlvARi5NGmXV9lChoBmgJaA9DCBAGnnuPQ2dAlIaUUpRoFU3oA2gWR0CW8QqVyFPBdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 384,
79
+ "n_steps": 655,
80
+ "gamma": 0.998,
81
  "gae_lambda": 0.98,
82
  "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
+ "batch_size": 32,
86
+ "n_epochs": 8,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
  ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
Moonman-Lunar-Lander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c4b6cd295c0d69834c9b6d58e44388d4dfb86f34f09e88b4122a4dfad4c2eee5
3
  size 84893
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8520ade1d862cc3d18bf4b5acfffdcd7bfd4a2948532e4ef7e247245c7a40797
3
  size 84893
Moonman-Lunar-Lander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9c2880468f5ccbff2fda44ee711941801a6dcd2d82c15eb5da8fd62bc56519c7
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec3bf98334aa561dc9b00d6f32e09468bc2eb9868aa64c08b68ef462101d3f1a
3
  size 43201
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 244.28 +/- 67.94
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 241.33 +/- 24.82
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f06d9ef5170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f06d9ef5200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f06d9ef5290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f06d9ef5320>", "_build": "<function ActorCriticPolicy._build at 0x7f06d9ef53b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f06d9ef5440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f06d9ef54d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f06d9ef5560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f06d9ef55f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f06d9ef5680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f06d9ef5710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f06d9f37ab0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 512000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652273847.1759872, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOEQb2B2OU96WMQPrUcjL55wNw8tizxvAAAAAAAAAAAZjY8O+X9VT59cOU74iheviu2iTw2Wgq8AAAAAAAAAAAzom49KVAPulpRkDqtHZo1uiNBOiRDpLkAAIA/AACAP81oKrykk2084ckLPisiNr44D8k9zbwzvQAAAAAAAAAA8/v2PXu2v7rucdI5pES/tiaNNbzza/24AACAPwAAgD+mZ6E9KZh1ujBUhzWHiaYwGftbO06OubQAAIA/AACAP2YWETt7soq6ohmnuxEIQDUE5Ya4nkLAOgAAgD8AAIA/M2eyPOz0pT5vvBa9QpukvptpzTsTY1k8AAAAAAAAAAAz1hQ9e26zul7FCTqEZ4a1pan8uVwxHbkAAIA/AACAPzO4uDxceyG6ZklHuxwvD7bgcQw6ncBoOgAAgD8AAIA/M+eyPVxbULqLope7auX2OYqJvjpOsIy6AACAPwAAgD+aFlY9XOtxuqcBtTpeRi02lB9DOl3nz7kAAIA/AACAPxPMXr7E57g+t8A/PiSKlb5ibQ6+lt1KPQAAAAAAAAAATVmKPVIQqbm4InK5kTvRtPJrYzvulpA4AACAPwAAgD/awdU95JJlP2hQDTzDzfC+1FgzPh5ZCLsAAAAAAAAAAAClJT1sKve7D1gEPI1vKzyJhF29DL4UPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4pANpIvAZUCUhpRSlIwBbJRN6AOMAXSUR0Cj8UsMZxaQdX2UKGgGaAloD0MI0qsBSsMlZ0CUhpRSlGgVTegDaBZHQKPymowVTJh1fZQoaAZoCWgPQwgZj1IJzzxvQJSGlFKUaBVNzQJoFkdAo/Raf4AS4HV9lChoBmgJaA9DCDgvTnw11WhAlIaUUpRoFU3oA2gWR0Cj9cxcmjTKdX2UKGgGaAloD0MIaB8r+G3oZECUhpRSlGgVTegDaBZHQKP2XvOQhfV1fZQoaAZoCWgPQwhnSBXFK/JyQJSGlFKUaBVNIwFoFkdAo/bpKraM73V9lChoBmgJaA9DCM+8HHbfFWVAlIaUUpRoFU3oA2gWR0Cj+BgVXV9XdX2UKGgGaAloD0MIHeVgNgFrZkCUhpRSlGgVTegDaBZHQKP4gPlMh5h1fZQoaAZoCWgPQwhOfSB558VVQJSGlFKUaBVLm2gWR0Cj+cI5ggHNdX2UKGgGaAloD0MIlE4kmOrsY0CUhpRSlGgVTegDaBZHQKP6g+otL+R1fZQoaAZoCWgPQwhK7xtfe3xvQJSGlFKUaBVNgwFoFkdAo/uE4tHx0HV9lChoBmgJaA9DCD4JbM5BwHBAlIaUUpRoFU2PA2gWR0Cj/LPHtF8YdX2UKGgGaAloD0MIA0AVNy5DcUCUhpRSlGgVTWkCaBZHQKP87nBciW51fZQoaAZoCWgPQwi3Yn/ZPQdkQJSGlFKUaBVN6ANoFkdApAETWAf+0nV9lChoBmgJaA9DCK358ZcWIW1AlIaUUpRoFU31AWgWR0CkAbE/8l5XdX2UKGgGaAloD0MIhSaJJWVZcECUhpRSlGgVTZUBaBZHQKQDbS0jTrp1fZQoaAZoCWgPQwgCg6RPK7NsQJSGlFKUaBVNVwNoFkdApATbb+Lm63V9lChoBmgJaA9DCJp8s80N/GNAlIaUUpRoFU3oA2gWR0CkBVykCV8kdX2UKGgGaAloD0MIOPdXj3uhZ0CUhpRSlGgVTegDaBZHQKQFjyeZof11fZQoaAZoCWgPQwhaSSu+oQtkQJSGlFKUaBVN6ANoFkdApIP5zJZGKHV9lChoBmgJaA9DCOvkDMWdHXBAlIaUUpRoFU2XA2gWR0CkiKtz8xbjdX2UKGgGaAloD0MIDrxa7ozAcECUhpRSlGgVTQYDaBZHQKSJCjCYTkB1fZQoaAZoCWgPQwjQmbSpunZyQJSGlFKUaBVN4gFoFkdApI7I6IWP93V9lChoBmgJaA9DCPtz0ZDxMWFAlIaUUpRoFU3oA2gWR0Ckj772L5ymdX2UKGgGaAloD0MITMecZ2yEaECUhpRSlGgVTegDaBZHQKSR+XHim2t1fZQoaAZoCWgPQwie0VYlEVtiQJSGlFKUaBVN6ANoFkdApJQPy08eS3V9lChoBmgJaA9DCI22KoksdnJAlIaUUpRoFU1oAmgWR0CklLkFnqVydX2UKGgGaAloD0MIhjlBmxw6RECUhpRSlGgVS59oFkdApJTYNkOI7HV9lChoBmgJaA9DCNXrFoGxAmlAlIaUUpRoFU3oA2gWR0CklPawdKdydX2UKGgGaAloD0MIvhb03hjDcECUhpRSlGgVTaIBaBZHQKSWA2jO9nN1fZQoaAZoCWgPQwiNCTGX1DhjQJSGlFKUaBVN6ANoFkdApJYK55JK8XV9lChoBmgJaA9DCFluaTWk12NAlIaUUpRoFU3oA2gWR0CklygB91EFdX2UKGgGaAloD0MIpOTVOQaOZUCUhpRSlGgVTegDaBZHQKSXYfSx7iR1fZQoaAZoCWgPQwiUFi6rsElDQJSGlFKUaBVLimgWR0CkmEnYg7o0dX2UKGgGaAloD0MIO6kvS7tCZECUhpRSlGgVTegDaBZHQKUZLfWtlqd1fZQoaAZoCWgPQwgw16IFaPpnQJSGlFKUaBVN6ANoFkdApRnBfdAPd3V9lChoBmgJaA9DCJI+raJ/NnNAlIaUUpRoFU0kAWgWR0ClG52IoE0SdX2UKGgGaAloD0MIUoAomLH5Y0CUhpRSlGgVTegDaBZHQKUdbltj0+V1fZQoaAZoCWgPQwhXem02Vg1gQJSGlFKUaBVN6ANoFkdApR2fiT+vQnV9lChoBmgJaA9DCOdQhqqYpWRAlIaUUpRoFU3oA2gWR0ClH4A/s3Q2dX2UKGgGaAloD0MISQ7Y1WRSZkCUhpRSlGgVTegDaBZHQKUkMeZG8VZ1fZQoaAZoCWgPQwg9SE+RA4RxQJSGlFKUaBVNgQJoFkdApSidZDArQXV9lChoBmgJaA9DCEkrvqFwUGVAlIaUUpRoFU3oA2gWR0ClKadZA6dUdX2UKGgGaAloD0MI/G1PkFiYYkCUhpRSlGgVTegDaBZHQKUsii8nNPh1fZQoaAZoCWgPQwibN04KcyBhQJSGlFKUaBVN6ANoFkdApS5/UnXumnV9lChoBmgJaA9DCGvXhLRGqWVAlIaUUpRoFU3oA2gWR0ClLySAxzq9dX2UKGgGaAloD0MIkElGzkKDZUCUhpRSlGgVTegDaBZHQKUvXtw71Zl1fZQoaAZoCWgPQwhi9rLtNONkQJSGlFKUaBVN6ANoFkdApTBr28IzFnV9lChoBmgJaA9DCEEN38K6ZXFAlIaUUpRoFU2lAmgWR0ClrXa6z3RHdX2UKGgGaAloD0MIcOtunupJZkCUhpRSlGgVTegDaBZHQKWt3dZ7ojh1fZQoaAZoCWgPQwg3+pgPCIhlQJSGlFKUaBVN6ANoFkdApa4fSpiqhnV9lChoBmgJaA9DCMfXnlnSl3FAlIaUUpRoFU0PA2gWR0ClrpoB7u2JdX2UKGgGaAloD0MICMkCJvDpaECUhpRSlGgVTegDaBZHQKWyLOqNp/R1fZQoaAZoCWgPQwjdtYR8UMppQJSGlFKUaBVN6ANoFkdApbLPJ7sv7HV9lChoBmgJaA9DCEt1AS/z8nBAlIaUUpRoFU1ZAWgWR0CltVI7/4qPdX2UKGgGaAloD0MIkGYsmo6acUCUhpRSlGgVTTQBaBZHQKW2bHww0wd1fZQoaAZoCWgPQwiXdJSDWT5jQJSGlFKUaBVN6ANoFkdApbchwhnrZHV9lChoBmgJaA9DCC4dc54xD2VAlIaUUpRoFU3oA2gWR0CluTzYVZcLdX2UKGgGaAloD0MI11HVBFHiZUCUhpRSlGgVTegDaBZHQKW+YBpYcNp1fZQoaAZoCWgPQwgdAdwsnpRyQJSGlFKUaBVNXgFoFkdApcJi8an753V9lChoBmgJaA9DCHjuPVzyL2ZAlIaUUpRoFU3oA2gWR0ClwzcAzYVZdX2UKGgGaAloD0MIixagbTW8Z0CUhpRSlGgVTegDaBZHQKXEQ1eBxxV1fZQoaAZoCWgPQwiKA+j3/W1NQJSGlFKUaBVLsmgWR0ClxFOkUKzBdX2UKGgGaAloD0MILVvri4RrZECUhpRSlGgVTegDaBZHQKZFE+2VmjF1fZQoaAZoCWgPQwjdRZiiXDxiQJSGlFKUaBVN6ANoFkdApkcdPYWcjXV9lChoBmgJaA9DCHxgx3+Bs2VAlIaUUpRoFU3oA2gWR0CmR8XcYZVGdX2UKGgGaAloD0MIf4eiQB+vY0CUhpRSlGgVTegDaBZHQKZJLA6+36R1fZQoaAZoCWgPQwhGzy10pRZhQJSGlFKUaBVN6ANoFkdApkqsIiTt9nV9lChoBmgJaA9DCINStHKvRWlAlIaUUpRoFU3oA2gWR0CmSvUaqCHzdX2UKGgGaAloD0MINIEiFjHOZECUhpRSlGgVTegDaBZHQKZLir1/UfB1fZQoaAZoCWgPQwiYUSy3tMhKQJSGlFKUaBVLtWgWR0CmTVWNm16WdX2UKGgGaAloD0MI9x4uOe7CZUCUhpRSlGgVTegDaBZHQKZPjvKlpGp1fZQoaAZoCWgPQwgogGJkSR5hQJSGlFKUaBVN6ANoFkdAplA6OzY29HV9lChoBmgJaA9DCPKaV3VWwGNAlIaUUpRoFU3oA2gWR0CmUp5u63AmdX2UKGgGaAloD0MIgT/8/PeGTECUhpRSlGgVS7FoFkdAplLF6LOzIHV9lChoBmgJaA9DCPPK9baZKGNAlIaUUpRoFU3oA2gWR0CmU6I6r/83dX2UKGgGaAloD0MIzSIUW0H7YECUhpRSlGgVTegDaBZHQKZWSs90Rvp1fZQoaAZoCWgPQwhTzaylgOhMQJSGlFKUaBVLyGgWR0CmWNAvtdAxdX2UKGgGaAloD0MImNwoslY+YUCUhpRSlGgVTegDaBZHQKbbU7J4jbB1fZQoaAZoCWgPQwirIAa6dglmQJSGlFKUaBVN6ANoFkdAptwjv9cbBHV9lChoBmgJaA9DCHiZYaPs5XBAlIaUUpRoFU0+A2gWR0Cm3P0AtFrmdX2UKGgGaAloD0MIlgfpKbKxcECUhpRSlGgVTVABaBZHQKbdILBsQ/Z1fZQoaAZoCWgPQwgN3lflwoViQJSGlFKUaBVN6ANoFkdApt07VrhzeXV9lChoBmgJaA9DCAPpYtPKoGBAlIaUUpRoFU3oA2gWR0Cm3Uov8IiUdX2UKGgGaAloD0MIisqGNZU0bUCUhpRSlGgVTSYBaBZHQKbeIhje9Bd1fZQoaAZoCWgPQwgbutkfKPtuQJSGlFKUaBVNeQJoFkdApt9+KXOW0XV9lChoBmgJaA9DCLKbGf1oz2RAlIaUUpRoFU3oA2gWR0Cm36itA9mpdX2UKGgGaAloD0MI6E8b1WltaECUhpRSlGgVTegDaBZHQKbi4IO6NER1fZQoaAZoCWgPQwiZnxuaMnNjQJSGlFKUaBVN6ANoFkdApuQwbEP1+XV9lChoBmgJaA9DCP9YiA6BM19AlIaUUpRoFU3oA2gWR0Cm5HBMSK3vdX2UKGgGaAloD0MI8ppXdVaFZkCUhpRSlGgVTegDaBZHQKbk8JRfnfV1fZQoaAZoCWgPQwiM17yqsxdSQJSGlFKUaBVL22gWR0Cm5TOpbUw0dX2UKGgGaAloD0MIX7Uy4dfWcUCUhpRSlGgVTa4BaBZHQKbmrtUn5SF1fZQoaAZoCWgPQwj5oGezqjZwQJSGlFKUaBVNTgFoFkdApugOxdIGyHV9lChoBmgJaA9DCMoxWdz/425AlIaUUpRoFU2EAWgWR0Cm6A2uPmxMdX2UKGgGaAloD0MIujDSi9p0Y0CUhpRSlGgVTegDaBZHQKboWEIw/Ph1fZQoaAZoCWgPQwjuJvim6eJvQJSGlFKUaBVN3AFoFkdApulPDR+jM3V9lChoBmgJaA9DCCGunL0z+k1AlIaUUpRoFUvIaBZHQKbqKcy31Bd1fZQoaAZoCWgPQwhszOuIQ0hjQJSGlFKUaBVN6ANoFkdApuqis8xKx3V9lChoBmgJaA9DCH3mrE+5q2JAlIaUUpRoFU3oA2gWR0Cm62j9GZuydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 400, "n_steps": 800, "gamma": 0.997, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 16, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f90e95bb440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f90e95bb4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f90e95bb560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f90e95bb5f0>", "_build": "<function ActorCriticPolicy._build at 0x7f90e95bb680>", "forward": "<function ActorCriticPolicy.forward at 0x7f90e95bb710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f90e95bb7a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f90e95bb830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f90e95bb8c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f90e95bb950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f90e95bb9e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f90e95fed20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 503040, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652279651.7453177, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICzZj5nx2k/LrMNPq5nl76I6VM+Abk6vQAAAAAAAAAAgJY0PVLw77m+IAe70aXEtb6CPzvzBBw6AACAPwAAgD+aiPm8rtGruha2Ybu6KSq2CT59upRmgToAAIA/AACAP8Cx6T1UAas/CqEYP691tb5Wnec9BTx4PgAAAAAAAAAAZtbsujYSrz8ijS+911Wpvoy/qju9h388AAAAAAAAAACacVa9KcgYujtGHbzu+OQ4IFQnOlXVTbgAAIA/AACAPxMQeL5cwIA/iLtgvvwjir7cYWa+ULbHPQAAAAAAAAAAMxCcPiQQEz9m5Di+XAmsvm8c9DyIIBs8AAAAAAAAAABzNSu+qjuYP7IpR77AXpe+ELZ0voORcD0AAAAAAAAAACadHb62owO8TR4HuzK23LiZ33c9ZS0qOgAAgD8AAIA/evqCPhsCcj/DrOG9boR9viu3GT6RogO+AAAAAAAAAAAzH5A8w+1cupo2rbpUCCe2y293O3otyDkAAIA/AACAP02Sij3DCWW6aLTXO3YXj7UrVae5anh+tAAAgD8AAIA/gP4mvcOpVbrOZoc7XxpnOKYwHrqmZfK3AACAPwAAgD+aVgK9CkdmuXWSg7qXkzm18XFMuymbnDkAAIA/AACAP81yQ7wpiF666FbtO1d4P7ZTG1W5fRwytQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.006080000000000085, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICFkWTPyca0CUhpRSlIwBbJRNXwGMAXSUR0CTanD9wWFfdX2UKGgGaAloD0MIPfIHA0/5cUCUhpRSlGgVTUEBaBZHQJNqti8WbgF1fZQoaAZoCWgPQwioqtBA7GxwQJSGlFKUaBVNVQFoFkdAk2sWF8G9pXV9lChoBmgJaA9DCMPzUrEx8m5AlIaUUpRoFU0iAWgWR0CTbBHvMKTjdX2UKGgGaAloD0MIETY8vVLrcECUhpRSlGgVTWoBaBZHQJPAuDVYp2F1fZQoaAZoCWgPQwhBmrFoOuhtQJSGlFKUaBVNMAFoFkdAk8KOn/DLsHV9lChoBmgJaA9DCKhy2lNyyGtAlIaUUpRoFU0tAWgWR0CTw17p3X7MdX2UKGgGaAloD0MIBMk7h/J2cECUhpRSlGgVTUABaBZHQJPFvFNtZV51fZQoaAZoCWgPQwiEYitoWmRtQJSGlFKUaBVNJAFoFkdAk8XKZx7zCnV9lChoBmgJaA9DCAxbs5VXxnBAlIaUUpRoFU1DAWgWR0CTyR5qubI+dX2UKGgGaAloD0MI4gD6fX9eb0CUhpRSlGgVTWoBaBZHQJPJPEdeY2N1fZQoaAZoCWgPQwg8MevFEM5wQJSGlFKUaBVNUwFoFkdAk8leeFtbcHV9lChoBmgJaA9DCJFDxM1pqnBAlIaUUpRoFU0sAWgWR0CTyaAGB4D+dX2UKGgGaAloD0MI0opvKHzAbUCUhpRSlGgVTTIBaBZHQJPLG89Oh011fZQoaAZoCWgPQwiRup195RJvQJSGlFKUaBVNSAFoFkdAk8uIXTEzf3V9lChoBmgJaA9DCNuK/WV3a2tAlIaUUpRoFU1sAWgWR0CTzBWXkYGddX2UKGgGaAloD0MIyAbSxaZ0bkCUhpRSlGgVTZwBaBZHQJPNhLamGdt1fZQoaAZoCWgPQwh3EDtTaJpsQJSGlFKUaBVNYAFoFkdAk83SBkI5YHV9lChoBmgJaA9DCJgVinS/MHBAlIaUUpRoFU1UAWgWR0CTzo78ejmCdX2UKGgGaAloD0MI2bW93VJVcECUhpRSlGgVTYsBaBZHQJPO49t/Fzd1fZQoaAZoCWgPQwhtxf6ye/RvQJSGlFKUaBVNQgFoFkdAk8/oAn2IwnV9lChoBmgJaA9DCOntz0XDRHFAlIaUUpRoFU1cAWgWR0CT0vPX05EMdX2UKGgGaAloD0MIXFfMCG86bUCUhpRSlGgVTVgBaBZHQJPTrZCfHxV1fZQoaAZoCWgPQwgkD0QWaRNxQJSGlFKUaBVNRgFoFkdAk9VAMpgCwXV9lChoBmgJaA9DCBdJu9GHTnFAlIaUUpRoFU0hAWgWR0CT1umSQo1DdX2UKGgGaAloD0MIOQ8nMB0+cECUhpRSlGgVTTIBaBZHQJPXZEKE3851fZQoaAZoCWgPQwiuZp3x/VVyQJSGlFKUaBVNFwFoFkdAk9fgIhQm/nV9lChoBmgJaA9DCCdnKO54rG5AlIaUUpRoFU07AWgWR0CT1/RlHz6KdX2UKGgGaAloD0MIrvTabOwKcUCUhpRSlGgVTSYBaBZHQJPY/AoG6f91fZQoaAZoCWgPQwgZdhiT/thyQJSGlFKUaBVNLwFoFkdAk9niRr8BMnV9lChoBmgJaA9DCK358ZeWmG1AlIaUUpRoFU27AWgWR0CT2tLidat+dX2UKGgGaAloD0MIQ+T09Xx8bkCUhpRSlGgVTT4BaBZHQJPb2VgQYk51fZQoaAZoCWgPQwgIISBfws5xQJSGlFKUaBVNNQFoFkdAk9yCV8kUsXV9lChoBmgJaA9DCNVBXg9mV3BAlIaUUpRoFU1NAWgWR0CT3MWPLgXNdX2UKGgGaAloD0MIRnpRu18cckCUhpRSlGgVTcoBaBZHQJQ4nFdcB2h1fZQoaAZoCWgPQwip2m6CL7ZxQJSGlFKUaBVNqAFoFkdAlEMWMju8b3V9lChoBmgJaA9DCPd0dcci4XBAlIaUUpRoFU21AWgWR0CURBJYkmhNdX2UKGgGaAloD0MIesTouQW9cUCUhpRSlGgVTWkCaBZHQJRKdbLU1AJ1fZQoaAZoCWgPQwgrNBDLZvBMQJSGlFKUaBVN6ANoFkdAlFbvhVENOXV9lChoBmgJaA9DCHhGW5UEynBAlIaUUpRoFU2CAmgWR0CUVzZbY9PldX2UKGgGaAloD0MIbjXrjO8ncUCUhpRSlGgVTREDaBZHQJRYRog3cYZ1fZQoaAZoCWgPQwgeT8sP3FBwQJSGlFKUaBVNhgJoFkdAlFkD15B1LnV9lChoBmgJaA9DCHfWbrvQkHFAlIaUUpRoFU24AWgWR0CUWhCjDbaidX2UKGgGaAloD0MIqmOV0jOaZECUhpRSlGgVTegDaBZHQJSxrtlZowp1fZQoaAZoCWgPQwjIs8u3PpJBQJSGlFKUaBVL8GgWR0CUuXgsK9f1dX2UKGgGaAloD0MIOBQ+Wwc6YUCUhpRSlGgVTegDaBZHQJS7LB0p3HJ1fZQoaAZoCWgPQwh/pfPhWelmQJSGlFKUaBVN6ANoFkdAlL15iqhlDnV9lChoBmgJaA9DCEKWBRP/gWVAlIaUUpRoFU3oA2gWR0CUvib6xgRcdX2UKGgGaAloD0MIIZG28SfOY0CUhpRSlGgVTegDaBZHQJTAchib2Dh1fZQoaAZoCWgPQwhHjQkxl7RsQJSGlFKUaBVNXwFoFkdAlMFDcM3IdXV9lChoBmgJaA9DCDVdT3RdXGJAlIaUUpRoFU3oA2gWR0CUxIQN0/4ZdX2UKGgGaAloD0MIk2+2uTHjYECUhpRSlGgVTegDaBZHQJTFd/BnBcl1fZQoaAZoCWgPQwjcZFQZxiZnQJSGlFKUaBVN6ANoFkdAlMXVYhdMTXV9lChoBmgJaA9DCBu7RPVWnnBAlIaUUpRoFU1tAmgWR0CUx151eSjhdX2UKGgGaAloD0MIBvLs8q2tUUCUhpRSlGgVS+doFkdAlNKl7Qb++HV9lChoBmgJaA9DCDEjvD0IEFxAlIaUUpRoFU3oA2gWR0CVLTSHM2WIdX2UKGgGaAloD0MI/b/qyBGoZkCUhpRSlGgVTegDaBZHQJUuJGEwnIB1fZQoaAZoCWgPQwioj8AffupbQJSGlFKUaBVN6ANoFkdAlUQcbFS88XV9lChoBmgJaA9DCKJ71jXaiGNAlIaUUpRoFU3oA2gWR0CVRSEbYK6XdX2UKGgGaAloD0MIqRYRxWQrYECUhpRSlGgVTegDaBZHQJVGbSpiqhl1fZQoaAZoCWgPQwhss7ESc5hjQJSGlFKUaBVN6ANoFkdAlUycY/FBIHV9lChoBmgJaA9DCF9f61Ij5F1AlIaUUpRoFU3oA2gWR0CVVmr56+nJdX2UKGgGaAloD0MIMnTsoJKxY0CUhpRSlGgVTegDaBZHQJVYY690zTF1fZQoaAZoCWgPQwi8QbRWtPheQJSGlFKUaBVN6ANoFkdAlVsRIjGDMHV9lChoBmgJaA9DCMh5/x+nSWhAlIaUUpRoFU3oA2gWR0CVW8okiUxEdX2UKGgGaAloD0MI24toOybEYUCUhpRSlGgVTegDaBZHQJVeJUZNwit1fZQoaAZoCWgPQwifkJ23sexfQJSGlFKUaBVN6ANoFkdAlV8LUoa1kXV9lChoBmgJaA9DCHpuoSuRxWBAlIaUUpRoFU3oA2gWR0CVtm7CiyprdX2UKGgGaAloD0MIER0CRwITZkCUhpRSlGgVTegDaBZHQJW23lGPPs11fZQoaAZoCWgPQwin5nKDobdiQJSGlFKUaBVN6ANoFkdAlbiintOVPnV9lChoBmgJaA9DCHEbDeCtnmNAlIaUUpRoFU3oA2gWR0CVxPi+tbLVdX2UKGgGaAloD0MIhc0AF+QOYkCUhpRSlGgVTegDaBZHQJXNGwqy4Wl1fZQoaAZoCWgPQwhpjUEnBAdjQJSGlFKUaBVN6ANoFkdAlc4ER3/xUnV9lChoBmgJaA9DCE2+2ebG7mRAlIaUUpRoFU3oA2gWR0CV4svVmSQpdX2UKGgGaAloD0MI5BQdyWUhZUCUhpRSlGgVTegDaBZHQJXjvcsUZel1fZQoaAZoCWgPQwiXdJSD2VxhQJSGlFKUaBVN6ANoFkdAleUF4HHFP3V9lChoBmgJaA9DCHcujPQivGRAlIaUUpRoFU3oA2gWR0CWPVDL8rI6dX2UKGgGaAloD0MIY+3vbA+EYECUhpRSlGgVTegDaBZHQJZGur/82rJ1fZQoaAZoCWgPQwi13JkJBiliQJSGlFKUaBVN6ANoFkdAlkig9eQdS3V9lChoBmgJaA9DCK3ddqG5TjZAlIaUUpRoFUv9aBZHQJZLKL4vexh1fZQoaAZoCWgPQwh/vi1YqltgQJSGlFKUaBVN6ANoFkdAlkstmHxjKHV9lChoBmgJaA9DCGyVYHE4NWZAlIaUUpRoFU3oA2gWR0CWS91fE4vOdX2UKGgGaAloD0MIoWXdP5bqYECUhpRSlGgVTegDaBZHQJZOMKMNtqJ1fZQoaAZoCWgPQwhCQpQv6JhkQJSGlFKUaBVN6ANoFkdAlk8JBX0Xg3V9lChoBmgJaA9DCJHRAUnYaUdAlIaUUpRoFU0FAWgWR0CWUMU+9rXUdX2UKGgGaAloD0MIi8HDtG8oZkCUhpRSlGgVTegDaBZHQJZTRiYsunN1fZQoaAZoCWgPQwhJL2r3qz9jQJSGlFKUaBVN6ANoFkdAllOqifxtpHV9lChoBmgJaA9DCCkg7X8AvGNAlIaUUpRoFU3oA2gWR0CWVTYW+GoKdX2UKGgGaAloD0MIuoRDb/G0YkCUhpRSlGgVTegDaBZHQJZhDps41gp1fZQoaAZoCWgPQwjZdtoakcFiQJSGlFKUaBVN6ANoFkdAlrpJ2hZha3V9lChoBmgJaA9DCIgP7PgvPWRAlIaUUpRoFU3oA2gWR0CWu0pnpSrHdX2UKGgGaAloD0MIDVGFP0OiZUCUhpRSlGgVTegDaBZHQJbSjBSDRMN1fZQoaAZoCWgPQwhaD18mii9jQJSGlFKUaBVN6ANoFkdAltOPqoqCpXV9lChoBmgJaA9DCC2Y+KOo/WNAlIaUUpRoFU3oA2gWR0CW51Mju8brdX2UKGgGaAloD0MIWkdVE8S0Y0CUhpRSlGgVTegDaBZHQJbpyFi8Wbh1fZQoaAZoCWgPQwjJx+4CpZhkQJSGlFKUaBVN6ANoFkdAluyrn5i3HHV9lChoBmgJaA9DCNqM0xBVNGVAlIaUUpRoFU3oA2gWR0CW7LIOYplSdX2UKGgGaAloD0MIUkSGVTxfY0CUhpRSlGgVTegDaBZHQJbtiOjqOcV1fZQoaAZoCWgPQwg75dGNsDlmQJSGlFKUaBVN6ANoFkdAlvARi5NGmXV9lChoBmgJaA9DCBAGnnuPQ2dAlIaUUpRoFU3oA2gWR0CW8QqVyFPBdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 384, "n_steps": 655, "gamma": 0.998, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a3a9d04968ca0f2ec48e3d6de65acc180de2f446b339e9581e797402ff179c65
3
- size 190772
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50dfa95bbe8f840143430890ec81655fde53707e79e748a71a3d9ab7b85ebdfb
3
+ size 248860
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 244.28345422378342, "std_reward": 67.94121959847473, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T13:47:41.841509"}
 
1
+ {"mean_reward": 241.3331923562263, "std_reward": 24.81871655843627, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T14:59:08.083854"}