--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 266.93 +/- 24.72 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) ```python import gym from stable_baselines3 import PPO from stable_baselines3.common.evaluation import evaluate_policy from stable_baselines3.common.env_util import make_vec_env # Create a vectorized environment of 16 parallel environments env = make_vec_env("LunarLander-v2", n_envs=16) # Optimizaed Hyperparameters model = PPO( "MlpPolicy", env=env, n_steps=655, batch_size=32, n_epochs=8, gamma=0.998, gae_lambda=0.98, ent_coef=0.01, verbose=1, ) # Train it for 500,000 timesteps model.learn(total_timesteps=int(5e6)) # Create a new environment for evaluation eval_env = gym.make("LunarLander-v2") # Evaluate the model with 10 evaluation episodes and deterministic=True mean_reward, std_reward = evaluate_policy( model, eval_env, n_eval_episodes=10, deterministic=True ) # Print the results print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") #>>> mean_reward=254.56 +/- 18.45056958672337 ```