--- datasets: - saurabhshahane/ecommerce-text-classification language: - en library_name: transformers license: apache-2.0 metrics: - accuracy - f1 pipeline_tag: text-generation tags: - Ecommerce - Phi-3.5 - Fine-tuned --- ## Phi-3.5-mini-instruct-Ecommerce-Text-Classification This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on an [saurabhshahane/ecommerce-text-classification](https://www.kaggle.com/datasets/saurabhshahane/ecommerce-text-classification) dataset. ## Tutorial Customize Phi-3.5-mini-instruct model to predict various Ecommerce Categories from the text. ## Use with Transformers ```python from transformers import AutoTokenizer,AutoModelForCausalLM,pipeline import torch model_id = "kingabzpro/Phi-3.5-mini-instruct-Ecommerce-Text-Classification" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, return_dict=True, low_cpu_mem_usage=True, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True, ) text = "Inalsa Dazzle Glass Top, 3 Burner Gas Stove with Rust Proof Powder Coated Body, Black Toughened Glass Top, 2 Medium and 1 Small High Efficiency Brass Burners, Aluminum Mixing Tubes, Powder Coated Body, Inbuilt Stainless Steel Drip Trays, 360 degree Swivel Nozzle,Bigger Legs to Facilitate Cleaning Under Cooktop" prompt = f"""Classify the E-commerce text into Electronics, Household, Books and Clothing. text: {text} label: """.strip() pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.float16, device_map="auto", ) outputs = pipe(prompt, max_new_tokens=4, do_sample=True, temperature=0.1) print(outputs[0]["generated_text"].split("label: ")[-1].strip()) # Household ``` ## Results ```bash Accuracy: 0.860 Accuracy for label Electronics: 0.825 Accuracy for label Household: 0.926 Accuracy for label Books: 0.683 Accuracy for label Clothing: 0.947 ``` **Classification Report:** ```bash precision recall f1-score support Electronics 0.97 0.82 0.89 40 Household 0.88 0.93 0.90 81 Books 0.90 0.68 0.78 41 Clothing 0.88 0.95 0.91 38 micro avg 0.90 0.86 0.88 200 macro avg 0.91 0.85 0.87 200 weighted avg 0.90 0.86 0.88 200 ``` **Confusion Matrix:** ```bash [[33 6 1 0] [ 1 75 2 3] [ 0 3 28 2] [ 0 1 0 36]] ```