kingabzpro
commited on
Commit
•
273c3de
1
Parent(s):
bbb0b80
Initial commit
Browse files- README.md +36 -0
- a2c-HalfCheetahBulletEnv-v0.zip +3 -0
- a2c-HalfCheetahBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-HalfCheetahBulletEnv-v0/data +105 -0
- a2c-HalfCheetahBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-HalfCheetahBulletEnv-v0/policy.pth +3 -0
- a2c-HalfCheetahBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-HalfCheetahBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- HalfCheetahBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -262.69 +/- 30.55
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: HalfCheetahBulletEnv-v0
|
20 |
+
type: HalfCheetahBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **HalfCheetahBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **HalfCheetahBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-HalfCheetahBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79366f427302a3bc463156259fdc3614f26ede4d24de8f9b598225a028137e42
|
3 |
+
size 124885
|
a2c-HalfCheetahBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-HalfCheetahBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f54065819e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5406581a70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5406581b00>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5406581b90>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5406581c20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5406581cb0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5406581d40>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5406581dd0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5406581e60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5406581ef0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5406581f80>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f54065ca7e0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASVdwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsahZRoColDaAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsahZRoColDaAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsahZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsahZRoKolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
26
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
6
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1661944887.0501702,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAO/OeQAAAAAAEGQk1t63QvQAAAAAuOds9AAAAAGoqIMAKL52/Nda0vN4HLz99xBc7BdNhvryhh7x5PAvBi3WXvQz7pL+QgDA9OXkbQNkQ6TxlIY3Akbmuvg3Brb7RJ1fAjQvNvbho8L07855AAAAAAAQZCTW3rdC9AAAAAC452z0AAAAAaiogwHkkib811rS82CjrPn3EFztuW+u9vKGHvDogGMGLdZe9QE+7v5CAMD3XpRtA2RDpPGUhjcCRua6+DcGtvtEnV8CNC829uGjwvTvznkAAAAAABBkJNbet0L0AAAAALjnbPQAAAABqKiDAbiCTvzXWtLxkLCU/fcQXO0XEob28oYe8LR7/wIt1l71wqrC/kIAwPWMJGUDZEOk8ZSGNwJG5rr4Nwa2+0SdXwI0Lzb24aPC9O/OeQAAAAAAEGQk1t63QvQAAAAAuOds9AAAAAGoqIMBLBHq/Nda0vF8M/D59xBc7p3xgvryhh7yLJBbBi3WXvXKtwb+QgDA9B50dQNkQ6TxlIY3Akbmuvg3Brb7RJ1fAjQvNvbho8L2UdJRiLg=="
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAfsMK+AAAAAD8j6r0AAAAAa8yhvgAAAAAZsK0+AAAAAA7mBD4AAAAAqU6UPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPiv3L4AAAAAf1gBOgAAAADJM/C+AAAAAI9anT4AAAAAeMc9PAAAAACGrZs/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4U3hvgAAAAC0lQE+AAAAADDMh74AAAAA71iUPgAAAACWnyQ9AAAAAOqroD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICoOJa+AAAAAID2/zwAAAAAnj8uvgAAAACi+n4+AAAAAC3I1LwAAAAA5ZudPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHBB7mU4aP2MAWyUTegDjAF0lEdApcsotBfKIXV9lChoBkfAZ45g9eQdS2gHTegDaAhHQKXLKQ/X5Fh1fZQoaAZHwG4EzCLuQZJoB03oA2gIR0ClyymbsniOdX2UKGgGR8BqdiPU8V59aAdN6ANoCEdApcsqMHbAUXV9lChoBkfAf0eorFwT/WgHTegDaAhHQKXWxw+dK/V1fZQoaAZHwIN1+SU1Q69oB03oA2gIR0Cl1se2VmjCdX2UKGgGR8CANEkOZssQaAdN6ANoCEdApdbIaisXBXV9lChoBkfAe/x9OARTTGgHTegDaAhHQKXWyPtD2J11fZQoaAZHwH+yPkq+ajNoB03oA2gIR0Cl4p4a5wwTdX2UKGgGR8B5+f2Xb/OuaAdN6ANoCEdApeKei5/b03V9lChoBkfAfq5YywfQr2gHTegDaAhHQKXinyOJcgR1fZQoaAZHwHp/iYgJTl1oB03oA2gIR0Cl4p+w9q1xdX2UKGgGR8B6CdkXk5p8aAdN6ANoCEdApe58QZn+Q3V9lChoBkfAedlKnNxEOWgHTegDaAhHQKXufK8tf5V1fZQoaAZHwHf9MGTs6aNoB03oA2gIR0Cl7n0zj3mFdX2UKGgGR8B8i7pB5X2eaAdN6ANoCEdApe59wgkkbHV9lChoBkfAdBZ29+PRzGgHTegDaAhHQKX6YknCwbF1fZQoaAZHwHLTxzq8lHBoB03oA2gIR0Cl+mL8JlasdX2UKGgGR8Bx5KfL9uP4aAdN6ANoCEdApfpjnq3VkXV9lChoBkfAdvD3AmAskWgHTegDaAhHQKX6ZC3w1BN1fZQoaAZHwH9BMXenAIpoB03oA2gIR0CmBkPqLS/kdX2UKGgGR8B+tYVuaWonaAdN6ANoCEdApgZEaXKKYXV9lChoBkfAgg+b4SHuZ2gHTegDaAhHQKYGRSde6Zp1fZQoaAZHwIHrDdnCfpVoB03oA2gIR0CmBkXBxgiNdX2UKGgGR8B3uzRmbsniaAdN6ANoCEdAphM5dUsFuHV9lChoBkfAfKar+o99t2gHTegDaAhHQKYTOdkJ8fF1fZQoaAZHwHm7JtaY/mloB03oA2gIR0CmEzplJ6IFdX2UKGgGR8B+7247Rv3raAdN6ANoCEdAphM690zTF3V9lChoBkfAgRMirLhaT2gHTegDaAhHQKYe6AmReTp1fZQoaAZHwHyH/apPykNoB03oA2gIR0CmHuhzV+ZxdX2UKGgGR8CAPTRhttQ9aAdN6ANoCEdAph7o+0PYnXV9lChoBkfAe94kuHvc8GgHTegDaAhHQKYe6ZSeiBZ1fZQoaAZHwGoWPYFqzqtoB03oA2gIR0CmKp7vw3HadX2UKGgGR8BrrDDye7L/aAdN6ANoCEdApiqfQfIS13V9lChoBkfAbYxjXFtKqWgHTegDaAhHQKYqn9LHuJF1fZQoaAZHwHFg81fmcONoB03oA2gIR0CmKqBWYF7ldX2UKGgGR8Bq3N0tAcDKaAdN6ANoCEdApjZra/RE4XV9lChoBkfAa7/SofjjrGgHTegDaAhHQKY2a9yLhrF1fZQoaAZHwHFS4bbUPQRoB03oA2gIR0CmNmyH2ys0dX2UKGgGR8Bi9ywD/2kBaAdN6ANoCEdApjZtMVUMonV9lChoBkfAYdixB3RoiGgHTegDaAhHQKZCQ2UjcEh1fZQoaAZHwGbnWKMvRJFoB03oA2gIR0CmQkPC2tuDdX2UKGgGR8Bpa4C4jKPoaAdN6ANoCEdApkJEWhysCHV9lChoBkfAceoo8ZDRdGgHTegDaAhHQKZCROObRWt1fZQoaAZHwGACYdhiLEVoB03oA2gIR0CmTctITXardX2UKGgGR8BVH4tlI3BIaAdN6ANoCEdApk3Lnmq5snV9lChoBkfANQJn+Q2dd2gHTegDaAhHQKZNzDUmUnp1fZQoaAZHwFjBKNhmXgNoB03oA2gIR0CmTcy9mHxjdX2UKGgGR8Bd4zzVc2R8aAdN6ANoCEdApll555Z8r3V9lChoBkfAO9BrzoUzsWgHTegDaAhHQKZZelLvkR11fZQoaAZHwDoogaFVT75oB03oA2gIR0CmWXrgOz6adX2UKGgGR8BUAFAqur6taAdN6ANoCEdApll7gGbCrXV9lChoBkfAYA7SrHU+cGgHTegDaAhHQKZlTJp35et1fZQoaAZHwENXR77bcoJoB03oA2gIR0CmZU0q6OHWdX2UKGgGR8BST5GOMl1KaAdN6ANoCEdApmVN6Z6Uq3V9lChoBkfAQsmSKWLP2WgHTegDaAhHQKZlTrBTGYN1fZQoaAZHwF6uvc8DB/JoB03oA2gIR0CmcS4yfthNdX2UKGgGR8Bg4sEkjX4CaAdN6ANoCEdApnEux4Y773V9lChoBkfAYdRQ4S6DoWgHTegDaAhHQKZxL4t6HCZ1fZQoaAZHwF/Oncclw99oB03oA2gIR0CmcTBOpKjBdX2UKGgGR8BOznwXqJMyaAdN6ANoCEdApn0dLnLaEnV9lChoBkfAV9RweeWfLGgHTegDaAhHQKZ9HY+0PYp1fZQoaAZHwE2/B5X2dupoB03oA2gIR0CmfR48U21ldX2UKGgGR8BEBnE2pAD8aAdN6ANoCEdApn0exjawlnV9lChoBkfAJnDXOGCZnmgHTegDaAhHQKaI0W43FUB1fZQoaAZHwF21FMIu5BloB03oA2gIR0CmiNHVG0/odX2UKGgGR8BZmRyfcvduaAdN6ANoCEdApojSciGFjHV9lChoBkfATwMJlar3kGgHTegDaAhHQKaI0wKSgXd1fZQoaAZHwF1dJBw++uhoB03oA2gIR0CmlKfwqiGndX2UKGgGR8BW7xSgoPTYaAdN6ANoCEdAppSoS6DoQnV9lChoBkfAXvL1WbPQfWgHTegDaAhHQKaUqNVBD5V1fZQoaAZHwF6A3+dbxExoB03oA2gIR0CmlKljEvTPdX2UKGgGR8BjYz3sXzlLaAdN6ANoCEdApqBtschkiHV9lChoBkfAXfQnkT6BRWgHTegDaAhHQKagbhXr+o91fZQoaAZHwGBu+YUnG85oB03oA2gIR0CmoG6ef7JodX2UKGgGR8BT7tJaq0dBaAdN6ANoCEdApqBvMdLg43V9lChoBkfAbZmZ4Oc2BWgHTegDaAhHQKasMF7laKV1fZQoaAZHwGpu9mYjSohoB03oA2gIR0CmrDC8OCoTdX2UKGgGR8Bmd4cvM8oyaAdN6ANoCEdApqwxWHUMHHV9lChoBkfAapx0IToMa2gHTegDaAhHQKasMgsbvPV1fZQoaAZHwGknawljVhFoB03oA2gIR0Cmt/4hllK9dX2UKGgGR8BwkcqvvBrOaAdN6ANoCEdAprf+jGkvb3V9lChoBkfAbEO0lZ5iVmgHTegDaAhHQKa3/1g6U7l1fZQoaAZHwG25F05lvqFoB03oA2gIR0CmuAAHE/B4dX2UKGgGR8Bnl+2RaHKwaAdN6ANoCEdApsPbF6zE8HV9lChoBkfAcSobjLjgh2gHTegDaAhHQKbD23DvVmV1fZQoaAZHwHHbmw3YL9doB03oA2gIR0Cmw9wCr92pdX2UKGgGR8Bvcc7fYSQHaAdN6ANoCEdApsPcnRb8nHV9lChoBkfAdCWzSThYNmgHTegDaAhHQKbPoNEPUa11fZQoaAZHwHS0u6d1+y9oB03oA2gIR0Cmz6E74i5edX2UKGgGR8B6mzs3Q2MsaAdN6ANoCEdAps+hzaK1onV9lChoBkfAdKnQ9ic5KmgHTegDaAhHQKbPolkYoAp1fZQoaAZHwGMFYjrzGxVoB03oA2gIR0Cm23l8G9pRdX2UKGgGR8BS6N8/lhgFaAdN6ANoCEdAptt5y0a6z3V9lChoBkfAZ58eU6gdwWgHTegDaAhHQKbbelhPTG51fZQoaAZHwGIPlF2FFlVoB03oA2gIR0Cm23rzGxUvdX2UKGgGR8BxZTta6jFiaAdN6ANoCEdApudJXMhX83V9lChoBkfAahx8Nx2jf2gHTegDaAhHQKbnSbc45tF1fZQoaAZHwGfnSP+4smRoB03oA2gIR0Cm50pDVpbmdX2UKGgGR8BoXVECvHLiaAdN6ANoCEdApudK3PRiPXVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-HalfCheetahBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92a3cb6c6aef836cb25adbe7474429614f65ec917192cef606351b703141dd19
|
3 |
+
size 54078
|
a2c-HalfCheetahBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7115f54aee4b5d471970ee4417b68b1cdd28dfc20a90c0fed160f4ee0515f955
|
3 |
+
size 54718
|
a2c-HalfCheetahBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-HalfCheetahBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f54065819e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5406581a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5406581b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5406581b90>", "_build": "<function ActorCriticPolicy._build at 0x7f5406581c20>", "forward": "<function ActorCriticPolicy.forward at 0x7f5406581cb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5406581d40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5406581dd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5406581e60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5406581ef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5406581f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f54065ca7e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVdwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsahZRoColDaAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsahZRoColDaAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsahZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsahZRoKolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [26], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1661944887.0501702, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAO/OeQAAAAAAEGQk1t63QvQAAAAAuOds9AAAAAGoqIMAKL52/Nda0vN4HLz99xBc7BdNhvryhh7x5PAvBi3WXvQz7pL+QgDA9OXkbQNkQ6TxlIY3Akbmuvg3Brb7RJ1fAjQvNvbho8L07855AAAAAAAQZCTW3rdC9AAAAAC452z0AAAAAaiogwHkkib811rS82CjrPn3EFztuW+u9vKGHvDogGMGLdZe9QE+7v5CAMD3XpRtA2RDpPGUhjcCRua6+DcGtvtEnV8CNC829uGjwvTvznkAAAAAABBkJNbet0L0AAAAALjnbPQAAAABqKiDAbiCTvzXWtLxkLCU/fcQXO0XEob28oYe8LR7/wIt1l71wqrC/kIAwPWMJGUDZEOk8ZSGNwJG5rr4Nwa2+0SdXwI0Lzb24aPC9O/OeQAAAAAAEGQk1t63QvQAAAAAuOds9AAAAAGoqIMBLBHq/Nda0vF8M/D59xBc7p3xgvryhh7yLJBbBi3WXvXKtwb+QgDA9B50dQNkQ6TxlIY3Akbmuvg3Brb7RJ1fAjQvNvbho8L2UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAfsMK+AAAAAD8j6r0AAAAAa8yhvgAAAAAZsK0+AAAAAA7mBD4AAAAAqU6UPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPiv3L4AAAAAf1gBOgAAAADJM/C+AAAAAI9anT4AAAAAeMc9PAAAAACGrZs/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4U3hvgAAAAC0lQE+AAAAADDMh74AAAAA71iUPgAAAACWnyQ9AAAAAOqroD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICoOJa+AAAAAID2/zwAAAAAnj8uvgAAAACi+n4+AAAAAC3I1LwAAAAA5ZudPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHBB7mU4aP2MAWyUTegDjAF0lEdApcsotBfKIXV9lChoBkfAZ45g9eQdS2gHTegDaAhHQKXLKQ/X5Fh1fZQoaAZHwG4EzCLuQZJoB03oA2gIR0ClyymbsniOdX2UKGgGR8BqdiPU8V59aAdN6ANoCEdApcsqMHbAUXV9lChoBkfAf0eorFwT/WgHTegDaAhHQKXWxw+dK/V1fZQoaAZHwIN1+SU1Q69oB03oA2gIR0Cl1se2VmjCdX2UKGgGR8CANEkOZssQaAdN6ANoCEdApdbIaisXBXV9lChoBkfAe/x9OARTTGgHTegDaAhHQKXWyPtD2J11fZQoaAZHwH+yPkq+ajNoB03oA2gIR0Cl4p4a5wwTdX2UKGgGR8B5+f2Xb/OuaAdN6ANoCEdApeKei5/b03V9lChoBkfAfq5YywfQr2gHTegDaAhHQKXinyOJcgR1fZQoaAZHwHp/iYgJTl1oB03oA2gIR0Cl4p+w9q1xdX2UKGgGR8B6CdkXk5p8aAdN6ANoCEdApe58QZn+Q3V9lChoBkfAedlKnNxEOWgHTegDaAhHQKXufK8tf5V1fZQoaAZHwHf9MGTs6aNoB03oA2gIR0Cl7n0zj3mFdX2UKGgGR8B8i7pB5X2eaAdN6ANoCEdApe59wgkkbHV9lChoBkfAdBZ29+PRzGgHTegDaAhHQKX6YknCwbF1fZQoaAZHwHLTxzq8lHBoB03oA2gIR0Cl+mL8JlasdX2UKGgGR8Bx5KfL9uP4aAdN6ANoCEdApfpjnq3VkXV9lChoBkfAdvD3AmAskWgHTegDaAhHQKX6ZC3w1BN1fZQoaAZHwH9BMXenAIpoB03oA2gIR0CmBkPqLS/kdX2UKGgGR8B+tYVuaWonaAdN6ANoCEdApgZEaXKKYXV9lChoBkfAgg+b4SHuZ2gHTegDaAhHQKYGRSde6Zp1fZQoaAZHwIHrDdnCfpVoB03oA2gIR0CmBkXBxgiNdX2UKGgGR8B3uzRmbsniaAdN6ANoCEdAphM5dUsFuHV9lChoBkfAfKar+o99t2gHTegDaAhHQKYTOdkJ8fF1fZQoaAZHwHm7JtaY/mloB03oA2gIR0CmEzplJ6IFdX2UKGgGR8B+7247Rv3raAdN6ANoCEdAphM690zTF3V9lChoBkfAgRMirLhaT2gHTegDaAhHQKYe6AmReTp1fZQoaAZHwHyH/apPykNoB03oA2gIR0CmHuhzV+ZxdX2UKGgGR8CAPTRhttQ9aAdN6ANoCEdAph7o+0PYnXV9lChoBkfAe94kuHvc8GgHTegDaAhHQKYe6ZSeiBZ1fZQoaAZHwGoWPYFqzqtoB03oA2gIR0CmKp7vw3HadX2UKGgGR8BrrDDye7L/aAdN6ANoCEdApiqfQfIS13V9lChoBkfAbYxjXFtKqWgHTegDaAhHQKYqn9LHuJF1fZQoaAZHwHFg81fmcONoB03oA2gIR0CmKqBWYF7ldX2UKGgGR8Bq3N0tAcDKaAdN6ANoCEdApjZra/RE4XV9lChoBkfAa7/SofjjrGgHTegDaAhHQKY2a9yLhrF1fZQoaAZHwHFS4bbUPQRoB03oA2gIR0CmNmyH2ys0dX2UKGgGR8Bi9ywD/2kBaAdN6ANoCEdApjZtMVUMonV9lChoBkfAYdixB3RoiGgHTegDaAhHQKZCQ2UjcEh1fZQoaAZHwGbnWKMvRJFoB03oA2gIR0CmQkPC2tuDdX2UKGgGR8Bpa4C4jKPoaAdN6ANoCEdApkJEWhysCHV9lChoBkfAceoo8ZDRdGgHTegDaAhHQKZCROObRWt1fZQoaAZHwGACYdhiLEVoB03oA2gIR0CmTctITXardX2UKGgGR8BVH4tlI3BIaAdN6ANoCEdApk3Lnmq5snV9lChoBkfANQJn+Q2dd2gHTegDaAhHQKZNzDUmUnp1fZQoaAZHwFjBKNhmXgNoB03oA2gIR0CmTcy9mHxjdX2UKGgGR8Bd4zzVc2R8aAdN6ANoCEdApll555Z8r3V9lChoBkfAO9BrzoUzsWgHTegDaAhHQKZZelLvkR11fZQoaAZHwDoogaFVT75oB03oA2gIR0CmWXrgOz6adX2UKGgGR8BUAFAqur6taAdN6ANoCEdApll7gGbCrXV9lChoBkfAYA7SrHU+cGgHTegDaAhHQKZlTJp35et1fZQoaAZHwENXR77bcoJoB03oA2gIR0CmZU0q6OHWdX2UKGgGR8BST5GOMl1KaAdN6ANoCEdApmVN6Z6Uq3V9lChoBkfAQsmSKWLP2WgHTegDaAhHQKZlTrBTGYN1fZQoaAZHwF6uvc8DB/JoB03oA2gIR0CmcS4yfthNdX2UKGgGR8Bg4sEkjX4CaAdN6ANoCEdApnEux4Y773V9lChoBkfAYdRQ4S6DoWgHTegDaAhHQKZxL4t6HCZ1fZQoaAZHwF/Oncclw99oB03oA2gIR0CmcTBOpKjBdX2UKGgGR8BOznwXqJMyaAdN6ANoCEdApn0dLnLaEnV9lChoBkfAV9RweeWfLGgHTegDaAhHQKZ9HY+0PYp1fZQoaAZHwE2/B5X2dupoB03oA2gIR0CmfR48U21ldX2UKGgGR8BEBnE2pAD8aAdN6ANoCEdApn0exjawlnV9lChoBkfAJnDXOGCZnmgHTegDaAhHQKaI0W43FUB1fZQoaAZHwF21FMIu5BloB03oA2gIR0CmiNHVG0/odX2UKGgGR8BZmRyfcvduaAdN6ANoCEdApojSciGFjHV9lChoBkfATwMJlar3kGgHTegDaAhHQKaI0wKSgXd1fZQoaAZHwF1dJBw++uhoB03oA2gIR0CmlKfwqiGndX2UKGgGR8BW7xSgoPTYaAdN6ANoCEdAppSoS6DoQnV9lChoBkfAXvL1WbPQfWgHTegDaAhHQKaUqNVBD5V1fZQoaAZHwF6A3+dbxExoB03oA2gIR0CmlKljEvTPdX2UKGgGR8BjYz3sXzlLaAdN6ANoCEdApqBtschkiHV9lChoBkfAXfQnkT6BRWgHTegDaAhHQKagbhXr+o91fZQoaAZHwGBu+YUnG85oB03oA2gIR0CmoG6ef7JodX2UKGgGR8BT7tJaq0dBaAdN6ANoCEdApqBvMdLg43V9lChoBkfAbZmZ4Oc2BWgHTegDaAhHQKasMF7laKV1fZQoaAZHwGpu9mYjSohoB03oA2gIR0CmrDC8OCoTdX2UKGgGR8Bmd4cvM8oyaAdN6ANoCEdApqwxWHUMHHV9lChoBkfAapx0IToMa2gHTegDaAhHQKasMgsbvPV1fZQoaAZHwGknawljVhFoB03oA2gIR0Cmt/4hllK9dX2UKGgGR8BwkcqvvBrOaAdN6ANoCEdAprf+jGkvb3V9lChoBkfAbEO0lZ5iVmgHTegDaAhHQKa3/1g6U7l1fZQoaAZHwG25F05lvqFoB03oA2gIR0CmuAAHE/B4dX2UKGgGR8Bnl+2RaHKwaAdN6ANoCEdApsPbF6zE8HV9lChoBkfAcSobjLjgh2gHTegDaAhHQKbD23DvVmV1fZQoaAZHwHHbmw3YL9doB03oA2gIR0Cmw9wCr92pdX2UKGgGR8Bvcc7fYSQHaAdN6ANoCEdApsPcnRb8nHV9lChoBkfAdCWzSThYNmgHTegDaAhHQKbPoNEPUa11fZQoaAZHwHS0u6d1+y9oB03oA2gIR0Cmz6E74i5edX2UKGgGR8B6mzs3Q2MsaAdN6ANoCEdAps+hzaK1onV9lChoBkfAdKnQ9ic5KmgHTegDaAhHQKbPolkYoAp1fZQoaAZHwGMFYjrzGxVoB03oA2gIR0Cm23l8G9pRdX2UKGgGR8BS6N8/lhgFaAdN6ANoCEdAptt5y0a6z3V9lChoBkfAZ58eU6gdwWgHTegDaAhHQKbbelhPTG51fZQoaAZHwGIPlF2FFlVoB03oA2gIR0Cm23rzGxUvdX2UKGgGR8BxZTta6jFiaAdN6ANoCEdApudJXMhX83V9lChoBkfAahx8Nx2jf2gHTegDaAhHQKbnSbc45tF1fZQoaAZHwGfnSP+4smRoB03oA2gIR0Cm50pDVpbmdX2UKGgGR8BoXVECvHLiaAdN6ANoCEdApudK3PRiPXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (485 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -262.6929150742159, "std_reward": 30.55204840424793, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-31T12:10:53.465303"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:977c6f4c76ea77f2574d5d1f05961eb5f7cab9f84bebc703e52e70c59f2c93e0
|
3 |
+
size 2659
|