kingabzpro commited on
Commit
273c3de
1 Parent(s): bbb0b80

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - HalfCheetahBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -262.69 +/- 30.55
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: HalfCheetahBulletEnv-v0
20
+ type: HalfCheetahBulletEnv-v0
21
+ ---
22
+
23
+ # **A2C** Agent playing **HalfCheetahBulletEnv-v0**
24
+ This is a trained model of a **A2C** agent playing **HalfCheetahBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
a2c-HalfCheetahBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79366f427302a3bc463156259fdc3614f26ede4d24de8f9b598225a028137e42
3
+ size 124885
a2c-HalfCheetahBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
a2c-HalfCheetahBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f54065819e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5406581a70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5406581b00>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5406581b90>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5406581c20>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5406581cb0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5406581d40>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5406581dd0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5406581e60>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5406581ef0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5406581f80>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f54065ca7e0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gASVdwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsahZRoColDaAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsahZRoColDaAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsahZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsahZRoKolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 26
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]",
45
+ "_np_random": null
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 6
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True]",
57
+ "bounded_above": "[ True True True True True True]",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 4,
61
+ "num_timesteps": 2000000,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1661944887.0501702,
67
+ "learning_rate": 0.00096,
68
+ "tensorboard_log": "./tensorboard",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAO/OeQAAAAAAEGQk1t63QvQAAAAAuOds9AAAAAGoqIMAKL52/Nda0vN4HLz99xBc7BdNhvryhh7x5PAvBi3WXvQz7pL+QgDA9OXkbQNkQ6TxlIY3Akbmuvg3Brb7RJ1fAjQvNvbho8L07855AAAAAAAQZCTW3rdC9AAAAAC452z0AAAAAaiogwHkkib811rS82CjrPn3EFztuW+u9vKGHvDogGMGLdZe9QE+7v5CAMD3XpRtA2RDpPGUhjcCRua6+DcGtvtEnV8CNC829uGjwvTvznkAAAAAABBkJNbet0L0AAAAALjnbPQAAAABqKiDAbiCTvzXWtLxkLCU/fcQXO0XEob28oYe8LR7/wIt1l71wqrC/kIAwPWMJGUDZEOk8ZSGNwJG5rr4Nwa2+0SdXwI0Lzb24aPC9O/OeQAAAAAAEGQk1t63QvQAAAAAuOds9AAAAAGoqIMBLBHq/Nda0vF8M/D59xBc7p3xgvryhh7yLJBbBi3WXvXKtwb+QgDA9B50dQNkQ6TxlIY3Akbmuvg3Brb7RJ1fAjQvNvbho8L2UdJRiLg=="
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAfsMK+AAAAAD8j6r0AAAAAa8yhvgAAAAAZsK0+AAAAAA7mBD4AAAAAqU6UPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPiv3L4AAAAAf1gBOgAAAADJM/C+AAAAAI9anT4AAAAAeMc9PAAAAACGrZs/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4U3hvgAAAAC0lQE+AAAAADDMh74AAAAA71iUPgAAAACWnyQ9AAAAAOqroD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICoOJa+AAAAAID2/zwAAAAAnj8uvgAAAACi+n4+AAAAAC3I1LwAAAAA5ZudPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.0,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHBB7mU4aP2MAWyUTegDjAF0lEdApcsotBfKIXV9lChoBkfAZ45g9eQdS2gHTegDaAhHQKXLKQ/X5Fh1fZQoaAZHwG4EzCLuQZJoB03oA2gIR0ClyymbsniOdX2UKGgGR8BqdiPU8V59aAdN6ANoCEdApcsqMHbAUXV9lChoBkfAf0eorFwT/WgHTegDaAhHQKXWxw+dK/V1fZQoaAZHwIN1+SU1Q69oB03oA2gIR0Cl1se2VmjCdX2UKGgGR8CANEkOZssQaAdN6ANoCEdApdbIaisXBXV9lChoBkfAe/x9OARTTGgHTegDaAhHQKXWyPtD2J11fZQoaAZHwH+yPkq+ajNoB03oA2gIR0Cl4p4a5wwTdX2UKGgGR8B5+f2Xb/OuaAdN6ANoCEdApeKei5/b03V9lChoBkfAfq5YywfQr2gHTegDaAhHQKXinyOJcgR1fZQoaAZHwHp/iYgJTl1oB03oA2gIR0Cl4p+w9q1xdX2UKGgGR8B6CdkXk5p8aAdN6ANoCEdApe58QZn+Q3V9lChoBkfAedlKnNxEOWgHTegDaAhHQKXufK8tf5V1fZQoaAZHwHf9MGTs6aNoB03oA2gIR0Cl7n0zj3mFdX2UKGgGR8B8i7pB5X2eaAdN6ANoCEdApe59wgkkbHV9lChoBkfAdBZ29+PRzGgHTegDaAhHQKX6YknCwbF1fZQoaAZHwHLTxzq8lHBoB03oA2gIR0Cl+mL8JlasdX2UKGgGR8Bx5KfL9uP4aAdN6ANoCEdApfpjnq3VkXV9lChoBkfAdvD3AmAskWgHTegDaAhHQKX6ZC3w1BN1fZQoaAZHwH9BMXenAIpoB03oA2gIR0CmBkPqLS/kdX2UKGgGR8B+tYVuaWonaAdN6ANoCEdApgZEaXKKYXV9lChoBkfAgg+b4SHuZ2gHTegDaAhHQKYGRSde6Zp1fZQoaAZHwIHrDdnCfpVoB03oA2gIR0CmBkXBxgiNdX2UKGgGR8B3uzRmbsniaAdN6ANoCEdAphM5dUsFuHV9lChoBkfAfKar+o99t2gHTegDaAhHQKYTOdkJ8fF1fZQoaAZHwHm7JtaY/mloB03oA2gIR0CmEzplJ6IFdX2UKGgGR8B+7247Rv3raAdN6ANoCEdAphM690zTF3V9lChoBkfAgRMirLhaT2gHTegDaAhHQKYe6AmReTp1fZQoaAZHwHyH/apPykNoB03oA2gIR0CmHuhzV+ZxdX2UKGgGR8CAPTRhttQ9aAdN6ANoCEdAph7o+0PYnXV9lChoBkfAe94kuHvc8GgHTegDaAhHQKYe6ZSeiBZ1fZQoaAZHwGoWPYFqzqtoB03oA2gIR0CmKp7vw3HadX2UKGgGR8BrrDDye7L/aAdN6ANoCEdApiqfQfIS13V9lChoBkfAbYxjXFtKqWgHTegDaAhHQKYqn9LHuJF1fZQoaAZHwHFg81fmcONoB03oA2gIR0CmKqBWYF7ldX2UKGgGR8Bq3N0tAcDKaAdN6ANoCEdApjZra/RE4XV9lChoBkfAa7/SofjjrGgHTegDaAhHQKY2a9yLhrF1fZQoaAZHwHFS4bbUPQRoB03oA2gIR0CmNmyH2ys0dX2UKGgGR8Bi9ywD/2kBaAdN6ANoCEdApjZtMVUMonV9lChoBkfAYdixB3RoiGgHTegDaAhHQKZCQ2UjcEh1fZQoaAZHwGbnWKMvRJFoB03oA2gIR0CmQkPC2tuDdX2UKGgGR8Bpa4C4jKPoaAdN6ANoCEdApkJEWhysCHV9lChoBkfAceoo8ZDRdGgHTegDaAhHQKZCROObRWt1fZQoaAZHwGACYdhiLEVoB03oA2gIR0CmTctITXardX2UKGgGR8BVH4tlI3BIaAdN6ANoCEdApk3Lnmq5snV9lChoBkfANQJn+Q2dd2gHTegDaAhHQKZNzDUmUnp1fZQoaAZHwFjBKNhmXgNoB03oA2gIR0CmTcy9mHxjdX2UKGgGR8Bd4zzVc2R8aAdN6ANoCEdApll555Z8r3V9lChoBkfAO9BrzoUzsWgHTegDaAhHQKZZelLvkR11fZQoaAZHwDoogaFVT75oB03oA2gIR0CmWXrgOz6adX2UKGgGR8BUAFAqur6taAdN6ANoCEdApll7gGbCrXV9lChoBkfAYA7SrHU+cGgHTegDaAhHQKZlTJp35et1fZQoaAZHwENXR77bcoJoB03oA2gIR0CmZU0q6OHWdX2UKGgGR8BST5GOMl1KaAdN6ANoCEdApmVN6Z6Uq3V9lChoBkfAQsmSKWLP2WgHTegDaAhHQKZlTrBTGYN1fZQoaAZHwF6uvc8DB/JoB03oA2gIR0CmcS4yfthNdX2UKGgGR8Bg4sEkjX4CaAdN6ANoCEdApnEux4Y773V9lChoBkfAYdRQ4S6DoWgHTegDaAhHQKZxL4t6HCZ1fZQoaAZHwF/Oncclw99oB03oA2gIR0CmcTBOpKjBdX2UKGgGR8BOznwXqJMyaAdN6ANoCEdApn0dLnLaEnV9lChoBkfAV9RweeWfLGgHTegDaAhHQKZ9HY+0PYp1fZQoaAZHwE2/B5X2dupoB03oA2gIR0CmfR48U21ldX2UKGgGR8BEBnE2pAD8aAdN6ANoCEdApn0exjawlnV9lChoBkfAJnDXOGCZnmgHTegDaAhHQKaI0W43FUB1fZQoaAZHwF21FMIu5BloB03oA2gIR0CmiNHVG0/odX2UKGgGR8BZmRyfcvduaAdN6ANoCEdApojSciGFjHV9lChoBkfATwMJlar3kGgHTegDaAhHQKaI0wKSgXd1fZQoaAZHwF1dJBw++uhoB03oA2gIR0CmlKfwqiGndX2UKGgGR8BW7xSgoPTYaAdN6ANoCEdAppSoS6DoQnV9lChoBkfAXvL1WbPQfWgHTegDaAhHQKaUqNVBD5V1fZQoaAZHwF6A3+dbxExoB03oA2gIR0CmlKljEvTPdX2UKGgGR8BjYz3sXzlLaAdN6ANoCEdApqBtschkiHV9lChoBkfAXfQnkT6BRWgHTegDaAhHQKagbhXr+o91fZQoaAZHwGBu+YUnG85oB03oA2gIR0CmoG6ef7JodX2UKGgGR8BT7tJaq0dBaAdN6ANoCEdApqBvMdLg43V9lChoBkfAbZmZ4Oc2BWgHTegDaAhHQKasMF7laKV1fZQoaAZHwGpu9mYjSohoB03oA2gIR0CmrDC8OCoTdX2UKGgGR8Bmd4cvM8oyaAdN6ANoCEdApqwxWHUMHHV9lChoBkfAapx0IToMa2gHTegDaAhHQKasMgsbvPV1fZQoaAZHwGknawljVhFoB03oA2gIR0Cmt/4hllK9dX2UKGgGR8BwkcqvvBrOaAdN6ANoCEdAprf+jGkvb3V9lChoBkfAbEO0lZ5iVmgHTegDaAhHQKa3/1g6U7l1fZQoaAZHwG25F05lvqFoB03oA2gIR0CmuAAHE/B4dX2UKGgGR8Bnl+2RaHKwaAdN6ANoCEdApsPbF6zE8HV9lChoBkfAcSobjLjgh2gHTegDaAhHQKbD23DvVmV1fZQoaAZHwHHbmw3YL9doB03oA2gIR0Cmw9wCr92pdX2UKGgGR8Bvcc7fYSQHaAdN6ANoCEdApsPcnRb8nHV9lChoBkfAdCWzSThYNmgHTegDaAhHQKbPoNEPUa11fZQoaAZHwHS0u6d1+y9oB03oA2gIR0Cmz6E74i5edX2UKGgGR8B6mzs3Q2MsaAdN6ANoCEdAps+hzaK1onV9lChoBkfAdKnQ9ic5KmgHTegDaAhHQKbPolkYoAp1fZQoaAZHwGMFYjrzGxVoB03oA2gIR0Cm23l8G9pRdX2UKGgGR8BS6N8/lhgFaAdN6ANoCEdAptt5y0a6z3V9lChoBkfAZ58eU6gdwWgHTegDaAhHQKbbelhPTG51fZQoaAZHwGIPlF2FFlVoB03oA2gIR0Cm23rzGxUvdX2UKGgGR8BxZTta6jFiaAdN6ANoCEdApudJXMhX83V9lChoBkfAahx8Nx2jf2gHTegDaAhHQKbnSbc45tF1fZQoaAZHwGfnSP+4smRoB03oA2gIR0Cm50pDVpbmdX2UKGgGR8BoXVECvHLiaAdN6ANoCEdApudK3PRiPXVlLg=="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 62500,
98
+ "n_steps": 8,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.9,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.5,
104
+ "normalize_advantage": false
105
+ }
a2c-HalfCheetahBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92a3cb6c6aef836cb25adbe7474429614f65ec917192cef606351b703141dd19
3
+ size 54078
a2c-HalfCheetahBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7115f54aee4b5d471970ee4417b68b1cdd28dfc20a90c0fed160f4ee0515f955
3
+ size 54718
a2c-HalfCheetahBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-HalfCheetahBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f54065819e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5406581a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5406581b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5406581b90>", "_build": "<function ActorCriticPolicy._build at 0x7f5406581c20>", "forward": "<function ActorCriticPolicy.forward at 0x7f5406581cb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5406581d40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5406581dd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5406581e60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5406581ef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5406581f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f54065ca7e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVdwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsahZRoColDaAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsahZRoColDaAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsahZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsahZRoKolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [26], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1661944887.0501702, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAO/OeQAAAAAAEGQk1t63QvQAAAAAuOds9AAAAAGoqIMAKL52/Nda0vN4HLz99xBc7BdNhvryhh7x5PAvBi3WXvQz7pL+QgDA9OXkbQNkQ6TxlIY3Akbmuvg3Brb7RJ1fAjQvNvbho8L07855AAAAAAAQZCTW3rdC9AAAAAC452z0AAAAAaiogwHkkib811rS82CjrPn3EFztuW+u9vKGHvDogGMGLdZe9QE+7v5CAMD3XpRtA2RDpPGUhjcCRua6+DcGtvtEnV8CNC829uGjwvTvznkAAAAAABBkJNbet0L0AAAAALjnbPQAAAABqKiDAbiCTvzXWtLxkLCU/fcQXO0XEob28oYe8LR7/wIt1l71wqrC/kIAwPWMJGUDZEOk8ZSGNwJG5rr4Nwa2+0SdXwI0Lzb24aPC9O/OeQAAAAAAEGQk1t63QvQAAAAAuOds9AAAAAGoqIMBLBHq/Nda0vF8M/D59xBc7p3xgvryhh7yLJBbBi3WXvXKtwb+QgDA9B50dQNkQ6TxlIY3Akbmuvg3Brb7RJ1fAjQvNvbho8L2UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAfsMK+AAAAAD8j6r0AAAAAa8yhvgAAAAAZsK0+AAAAAA7mBD4AAAAAqU6UPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPiv3L4AAAAAf1gBOgAAAADJM/C+AAAAAI9anT4AAAAAeMc9PAAAAACGrZs/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4U3hvgAAAAC0lQE+AAAAADDMh74AAAAA71iUPgAAAACWnyQ9AAAAAOqroD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICoOJa+AAAAAID2/zwAAAAAnj8uvgAAAACi+n4+AAAAAC3I1LwAAAAA5ZudPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHBB7mU4aP2MAWyUTegDjAF0lEdApcsotBfKIXV9lChoBkfAZ45g9eQdS2gHTegDaAhHQKXLKQ/X5Fh1fZQoaAZHwG4EzCLuQZJoB03oA2gIR0ClyymbsniOdX2UKGgGR8BqdiPU8V59aAdN6ANoCEdApcsqMHbAUXV9lChoBkfAf0eorFwT/WgHTegDaAhHQKXWxw+dK/V1fZQoaAZHwIN1+SU1Q69oB03oA2gIR0Cl1se2VmjCdX2UKGgGR8CANEkOZssQaAdN6ANoCEdApdbIaisXBXV9lChoBkfAe/x9OARTTGgHTegDaAhHQKXWyPtD2J11fZQoaAZHwH+yPkq+ajNoB03oA2gIR0Cl4p4a5wwTdX2UKGgGR8B5+f2Xb/OuaAdN6ANoCEdApeKei5/b03V9lChoBkfAfq5YywfQr2gHTegDaAhHQKXinyOJcgR1fZQoaAZHwHp/iYgJTl1oB03oA2gIR0Cl4p+w9q1xdX2UKGgGR8B6CdkXk5p8aAdN6ANoCEdApe58QZn+Q3V9lChoBkfAedlKnNxEOWgHTegDaAhHQKXufK8tf5V1fZQoaAZHwHf9MGTs6aNoB03oA2gIR0Cl7n0zj3mFdX2UKGgGR8B8i7pB5X2eaAdN6ANoCEdApe59wgkkbHV9lChoBkfAdBZ29+PRzGgHTegDaAhHQKX6YknCwbF1fZQoaAZHwHLTxzq8lHBoB03oA2gIR0Cl+mL8JlasdX2UKGgGR8Bx5KfL9uP4aAdN6ANoCEdApfpjnq3VkXV9lChoBkfAdvD3AmAskWgHTegDaAhHQKX6ZC3w1BN1fZQoaAZHwH9BMXenAIpoB03oA2gIR0CmBkPqLS/kdX2UKGgGR8B+tYVuaWonaAdN6ANoCEdApgZEaXKKYXV9lChoBkfAgg+b4SHuZ2gHTegDaAhHQKYGRSde6Zp1fZQoaAZHwIHrDdnCfpVoB03oA2gIR0CmBkXBxgiNdX2UKGgGR8B3uzRmbsniaAdN6ANoCEdAphM5dUsFuHV9lChoBkfAfKar+o99t2gHTegDaAhHQKYTOdkJ8fF1fZQoaAZHwHm7JtaY/mloB03oA2gIR0CmEzplJ6IFdX2UKGgGR8B+7247Rv3raAdN6ANoCEdAphM690zTF3V9lChoBkfAgRMirLhaT2gHTegDaAhHQKYe6AmReTp1fZQoaAZHwHyH/apPykNoB03oA2gIR0CmHuhzV+ZxdX2UKGgGR8CAPTRhttQ9aAdN6ANoCEdAph7o+0PYnXV9lChoBkfAe94kuHvc8GgHTegDaAhHQKYe6ZSeiBZ1fZQoaAZHwGoWPYFqzqtoB03oA2gIR0CmKp7vw3HadX2UKGgGR8BrrDDye7L/aAdN6ANoCEdApiqfQfIS13V9lChoBkfAbYxjXFtKqWgHTegDaAhHQKYqn9LHuJF1fZQoaAZHwHFg81fmcONoB03oA2gIR0CmKqBWYF7ldX2UKGgGR8Bq3N0tAcDKaAdN6ANoCEdApjZra/RE4XV9lChoBkfAa7/SofjjrGgHTegDaAhHQKY2a9yLhrF1fZQoaAZHwHFS4bbUPQRoB03oA2gIR0CmNmyH2ys0dX2UKGgGR8Bi9ywD/2kBaAdN6ANoCEdApjZtMVUMonV9lChoBkfAYdixB3RoiGgHTegDaAhHQKZCQ2UjcEh1fZQoaAZHwGbnWKMvRJFoB03oA2gIR0CmQkPC2tuDdX2UKGgGR8Bpa4C4jKPoaAdN6ANoCEdApkJEWhysCHV9lChoBkfAceoo8ZDRdGgHTegDaAhHQKZCROObRWt1fZQoaAZHwGACYdhiLEVoB03oA2gIR0CmTctITXardX2UKGgGR8BVH4tlI3BIaAdN6ANoCEdApk3Lnmq5snV9lChoBkfANQJn+Q2dd2gHTegDaAhHQKZNzDUmUnp1fZQoaAZHwFjBKNhmXgNoB03oA2gIR0CmTcy9mHxjdX2UKGgGR8Bd4zzVc2R8aAdN6ANoCEdApll555Z8r3V9lChoBkfAO9BrzoUzsWgHTegDaAhHQKZZelLvkR11fZQoaAZHwDoogaFVT75oB03oA2gIR0CmWXrgOz6adX2UKGgGR8BUAFAqur6taAdN6ANoCEdApll7gGbCrXV9lChoBkfAYA7SrHU+cGgHTegDaAhHQKZlTJp35et1fZQoaAZHwENXR77bcoJoB03oA2gIR0CmZU0q6OHWdX2UKGgGR8BST5GOMl1KaAdN6ANoCEdApmVN6Z6Uq3V9lChoBkfAQsmSKWLP2WgHTegDaAhHQKZlTrBTGYN1fZQoaAZHwF6uvc8DB/JoB03oA2gIR0CmcS4yfthNdX2UKGgGR8Bg4sEkjX4CaAdN6ANoCEdApnEux4Y773V9lChoBkfAYdRQ4S6DoWgHTegDaAhHQKZxL4t6HCZ1fZQoaAZHwF/Oncclw99oB03oA2gIR0CmcTBOpKjBdX2UKGgGR8BOznwXqJMyaAdN6ANoCEdApn0dLnLaEnV9lChoBkfAV9RweeWfLGgHTegDaAhHQKZ9HY+0PYp1fZQoaAZHwE2/B5X2dupoB03oA2gIR0CmfR48U21ldX2UKGgGR8BEBnE2pAD8aAdN6ANoCEdApn0exjawlnV9lChoBkfAJnDXOGCZnmgHTegDaAhHQKaI0W43FUB1fZQoaAZHwF21FMIu5BloB03oA2gIR0CmiNHVG0/odX2UKGgGR8BZmRyfcvduaAdN6ANoCEdApojSciGFjHV9lChoBkfATwMJlar3kGgHTegDaAhHQKaI0wKSgXd1fZQoaAZHwF1dJBw++uhoB03oA2gIR0CmlKfwqiGndX2UKGgGR8BW7xSgoPTYaAdN6ANoCEdAppSoS6DoQnV9lChoBkfAXvL1WbPQfWgHTegDaAhHQKaUqNVBD5V1fZQoaAZHwF6A3+dbxExoB03oA2gIR0CmlKljEvTPdX2UKGgGR8BjYz3sXzlLaAdN6ANoCEdApqBtschkiHV9lChoBkfAXfQnkT6BRWgHTegDaAhHQKagbhXr+o91fZQoaAZHwGBu+YUnG85oB03oA2gIR0CmoG6ef7JodX2UKGgGR8BT7tJaq0dBaAdN6ANoCEdApqBvMdLg43V9lChoBkfAbZmZ4Oc2BWgHTegDaAhHQKasMF7laKV1fZQoaAZHwGpu9mYjSohoB03oA2gIR0CmrDC8OCoTdX2UKGgGR8Bmd4cvM8oyaAdN6ANoCEdApqwxWHUMHHV9lChoBkfAapx0IToMa2gHTegDaAhHQKasMgsbvPV1fZQoaAZHwGknawljVhFoB03oA2gIR0Cmt/4hllK9dX2UKGgGR8BwkcqvvBrOaAdN6ANoCEdAprf+jGkvb3V9lChoBkfAbEO0lZ5iVmgHTegDaAhHQKa3/1g6U7l1fZQoaAZHwG25F05lvqFoB03oA2gIR0CmuAAHE/B4dX2UKGgGR8Bnl+2RaHKwaAdN6ANoCEdApsPbF6zE8HV9lChoBkfAcSobjLjgh2gHTegDaAhHQKbD23DvVmV1fZQoaAZHwHHbmw3YL9doB03oA2gIR0Cmw9wCr92pdX2UKGgGR8Bvcc7fYSQHaAdN6ANoCEdApsPcnRb8nHV9lChoBkfAdCWzSThYNmgHTegDaAhHQKbPoNEPUa11fZQoaAZHwHS0u6d1+y9oB03oA2gIR0Cmz6E74i5edX2UKGgGR8B6mzs3Q2MsaAdN6ANoCEdAps+hzaK1onV9lChoBkfAdKnQ9ic5KmgHTegDaAhHQKbPolkYoAp1fZQoaAZHwGMFYjrzGxVoB03oA2gIR0Cm23l8G9pRdX2UKGgGR8BS6N8/lhgFaAdN6ANoCEdAptt5y0a6z3V9lChoBkfAZ58eU6gdwWgHTegDaAhHQKbbelhPTG51fZQoaAZHwGIPlF2FFlVoB03oA2gIR0Cm23rzGxUvdX2UKGgGR8BxZTta6jFiaAdN6ANoCEdApudJXMhX83V9lChoBkfAahx8Nx2jf2gHTegDaAhHQKbnSbc45tF1fZQoaAZHwGfnSP+4smRoB03oA2gIR0Cm50pDVpbmdX2UKGgGR8BoXVECvHLiaAdN6ANoCEdApudK3PRiPXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (485 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -262.6929150742159, "std_reward": 30.55204840424793, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-31T12:10:53.465303"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:977c6f4c76ea77f2574d5d1f05961eb5f7cab9f84bebc703e52e70c59f2c93e0
3
+ size 2659