kingabzpro commited on
Commit
3ddf491
1 Parent(s): 25452e3

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.96 +/- 0.38
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e7a901f4ce37e7fd7dbded7846f9826bc142f4fe044bded4dba9e8f3cd5b595
3
+ size 107992
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7facebf798b0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7facebf78c80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1678445762509174461,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAE1rfPuBwFT3jJhA/E1rfPuBwFT3jJhA/E1rfPuBwFT3jJhA/E1rfPuBwFT3jJhA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzMWkv7Nl4L62u6Y/blNsv7QgSz/rVXW/S66Av/NLPj8eOtW/1jVHvxDter/q38q+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAATWt8+4HAVPeMmED8z1Z08ghmLO/VLQDwTWt8+4HAVPeMmED8z1Z08ghmLO/VLQDwTWt8+4HAVPeMmED8z1Z08ghmLO/VLQDwTWt8+4HAVPeMmED8z1Z08ghmLO/VLQDyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.4362341 0.0364846 0.56309336]\n [0.4362341 0.0364846 0.56309336]\n [0.4362341 0.0364846 0.56309336]\n [0.4362341 0.0364846 0.56309336]]",
60
+ "desired_goal": "[[-1.2872863 -0.4382759 1.3026035 ]\n [-0.92314804 0.79346776 -0.95834225]\n [-1.005319 0.7433464 -1.6658361 ]\n [-0.7781652 -0.9801798 -0.39623958]]",
61
+ "observation": "[[0.4362341 0.0364846 0.56309336 0.0192667 0.00424498 0.01173686]\n [0.4362341 0.0364846 0.56309336 0.0192667 0.00424498 0.01173686]\n [0.4362341 0.0364846 0.56309336 0.0192667 0.00424498 0.01173686]\n [0.4362341 0.0364846 0.56309336 0.0192667 0.00424498 0.01173686]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAvzEPZ/LFz4Us0w+buESu4egET4QbPU8QlH2PfHX8b3BKPQ7jsOlPSo+Fj5cOnc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.09618379 0.14823769 0.19990188]\n [-0.00224122 0.14221393 0.02995875]\n [ 0.12027217 -0.11808766 0.00745115]\n [ 0.0809394 0.14672151 0.06035839]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlWbzOAzm9r+UhpRSlIwBbJRLMowBdJRHQKklEizsyBV1fZQoaAZoCWgPQwjbM0sC1BTyv5SGlFKUaBVLMmgWR0CpJNa68QI2dX2UKGgGaAloD0MISrVPx2MG87+UhpRSlGgVSzJoFkdAqSSXUjLSu3V9lChoBmgJaA9DCONRKuEJvfa/lIaUUpRoFUsyaBZHQKkkWoQ4CIV1fZQoaAZoCWgPQwiFXKlnQSj1v5SGlFKUaBVLMmgWR0CpJwOuaF23dX2UKGgGaAloD0MIFtwPeGAA7b+UhpRSlGgVSzJoFkdAqSbH/T9bYHV9lChoBmgJaA9DCIcXRKSm3fa/lIaUUpRoFUsyaBZHQKkmiO801qF1fZQoaAZoCWgPQwgeboeGxej+v5SGlFKUaBVLMmgWR0CpJkxBE8aGdX2UKGgGaAloD0MI/rW8cr2t9L+UhpRSlGgVSzJoFkdAqSj4nH/953V9lChoBmgJaA9DCNr+lZUmJfS/lIaUUpRoFUsyaBZHQKkovUTcqON1fZQoaAZoCWgPQwhHdxA7U+jiv5SGlFKUaBVLMmgWR0CpKH6Lfk3kdX2UKGgGaAloD0MIqP3WTpQE87+UhpRSlGgVSzJoFkdAqShB0GNaQnV9lChoBmgJaA9DCGCvsOB+wPK/lIaUUpRoFUsyaBZHQKkq/yn1nNB1fZQoaAZoCWgPQwj1L0llinnwv5SGlFKUaBVLMmgWR0CpKsP9UCJXdX2UKGgGaAloD0MIIEPHDirx6r+UhpRSlGgVSzJoFkdAqSqEv9LpR3V9lChoBmgJaA9DCHy6umOxTei/lIaUUpRoFUsyaBZHQKkqR7O3UhF1fZQoaAZoCWgPQwgjg9xFmOL3v5SGlFKUaBVLMmgWR0CpLP+fAbhndX2UKGgGaAloD0MI2GSNeoiG9L+UhpRSlGgVSzJoFkdAqSzEK3NLUXV9lChoBmgJaA9DCLMngc05eOC/lIaUUpRoFUsyaBZHQKkshMOf/WF1fZQoaAZoCWgPQwgip6/naxb0v5SGlFKUaBVLMmgWR0CpLEgZCOWCdX2UKGgGaAloD0MIzEV8J2Y94r+UhpRSlGgVSzJoFkdAqS8UJrtVrHV9lChoBmgJaA9DCBFvnX+77Pu/lIaUUpRoFUsyaBZHQKku2TYdyT91fZQoaAZoCWgPQwjnbWx2pLr+v5SGlFKUaBVLMmgWR0CpLpotlI3BdX2UKGgGaAloD0MIIbHdPUAXAMCUhpRSlGgVSzJoFkdAqS5ddzGPxXV9lChoBmgJaA9DCO571F+vMOy/lIaUUpRoFUsyaBZHQKkwXreqJdl1fZQoaAZoCWgPQwiQEru2t9vpv5SGlFKUaBVLMmgWR0CpMCJ2ll9SdX2UKGgGaAloD0MI/iyWIvnK47+UhpRSlGgVSzJoFkdAqS/iHKwIMXV9lChoBmgJaA9DCOChKNAn8uW/lIaUUpRoFUsyaBZHQKkvpFm4Ajp1fZQoaAZoCWgPQwhPr5RliKP5v5SGlFKUaBVLMmgWR0CpMZ7QswtbdX2UKGgGaAloD0MIzuDvF7Ol5r+UhpRSlGgVSzJoFkdAqTFiv1UVBXV9lChoBmgJaA9DCFA1ejVA6eK/lIaUUpRoFUsyaBZHQKkxIq2jO9p1fZQoaAZoCWgPQwhIiV3b2y3nv5SGlFKUaBVLMmgWR0CpMOTZpSJkdX2UKGgGaAloD0MIq15+p8kM57+UhpRSlGgVSzJoFkdAqTLTwe/5+HV9lChoBmgJaA9DCE7tDFNb6um/lIaUUpRoFUsyaBZHQKkyl7LMcIZ1fZQoaAZoCWgPQwiHTzqRYKrtv5SGlFKUaBVLMmgWR0CpMld69kBkdX2UKGgGaAloD0MIqdpugm8a7L+UhpRSlGgVSzJoFkdAqTIZybQTmHV9lChoBmgJaA9DCBxBKsWOhvC/lIaUUpRoFUsyaBZHQKkz7vQ4S6F1fZQoaAZoCWgPQwj76NSVz3Lrv5SGlFKUaBVLMmgWR0CpM7LIPsiTdX2UKGgGaAloD0MIhjdr8L4q2L+UhpRSlGgVSzJoFkdAqTNygsbvPXV9lChoBmgJaA9DCKwahLndi/C/lIaUUpRoFUsyaBZHQKkzNKg7HQ11fZQoaAZoCWgPQwjrGi0Heijvv5SGlFKUaBVLMmgWR0CpNSK4hEBsdX2UKGgGaAloD0MILEXylUDK4b+UhpRSlGgVSzJoFkdAqTTmqaPS2HV9lChoBmgJaA9DCGWPUDOkSvO/lIaUUpRoFUsyaBZHQKk0py1eBxx1fZQoaAZoCWgPQwi3zyozpXXjv5SGlFKUaBVLMmgWR0CpNGnG0eEJdX2UKGgGaAloD0MIFasGYW732b+UhpRSlGgVSzJoFkdAqTZJyhi9ZnV9lChoBmgJaA9DCO8eoPtyZvG/lIaUUpRoFUsyaBZHQKk2DdgOSW91fZQoaAZoCWgPQwhA+iZNg6LSv5SGlFKUaBVLMmgWR0CpNc6Ei+tbdX2UKGgGaAloD0MIRQ2mYfhI97+UhpRSlGgVSzJoFkdAqTWRsGgSOHV9lChoBmgJaA9DCCQofoy56+a/lIaUUpRoFUsyaBZHQKk3dI6Kcd51fZQoaAZoCWgPQwhyTYHMzuL8v5SGlFKUaBVLMmgWR0CpNziBGx2TdX2UKGgGaAloD0MIpiiXxi8867+UhpRSlGgVSzJoFkdAqTb4VM23rnV9lChoBmgJaA9DCH/1uG+1Tsy/lIaUUpRoFUsyaBZHQKk2uqgAZKp1fZQoaAZoCWgPQwhXJCao4dvrv5SGlFKUaBVLMmgWR0CpOKGt6ol2dX2UKGgGaAloD0MIG2X9ZmK65b+UhpRSlGgVSzJoFkdAqThlmpVCHHV9lChoBmgJaA9DCGlRn+QOm+G/lIaUUpRoFUsyaBZHQKk4JW0Z3s51fZQoaAZoCWgPQwiFfNCzWXXpv5SGlFKUaBVLMmgWR0CpN+eu/1xsdX2UKGgGaAloD0MIRWKCGr6F6b+UhpRSlGgVSzJoFkdAqTnI0uUUwnV9lChoBmgJaA9DCKlPcodNZOO/lIaUUpRoFUsyaBZHQKk5jLPD50t1fZQoaAZoCWgPQwiPqbuyCwbYv5SGlFKUaBVLMmgWR0CpOUxFAmiQdX2UKGgGaAloD0MIIeo+AKlN97+UhpRSlGgVSzJoFkdAqTkOfoRqXXV9lChoBmgJaA9DCJPjTulgvfO/lIaUUpRoFUsyaBZHQKk69gAp8Wt1fZQoaAZoCWgPQwgmcsEZ/P3Yv5SGlFKUaBVLMmgWR0CpOroBJZntdX2UKGgGaAloD0MIQE0tW+uL5r+UhpRSlGgVSzJoFkdAqTp5u4wyqXV9lChoBmgJaA9DCDCgF+5cmOq/lIaUUpRoFUsyaBZHQKk6PA/s3Q51fZQoaAZoCWgPQwjoiHyXUpfxv5SGlFKUaBVLMmgWR0CpPEmVRk3CdX2UKGgGaAloD0MIH0sfuqD+8L+UhpRSlGgVSzJoFkdAqTwNiUgSvnV9lChoBmgJaA9DCIOI1LSLadC/lIaUUpRoFUsyaBZHQKk7zUR3/xV1fZQoaAZoCWgPQwi4ByEgX0Lrv5SGlFKUaBVLMmgWR0CpO5BCD28JdX2UKGgGaAloD0MIx0s3iUEg9b+UhpRSlGgVSzJoFkdAqT12MERranV9lChoBmgJaA9DCL/Uz5uKlPC/lIaUUpRoFUsyaBZHQKk9Oe7L+xZ1fZQoaAZoCWgPQwgLYwtBDsrlv5SGlFKUaBVLMmgWR0CpPPnGjsUqdX2UKGgGaAloD0MIU1ipoKKqAcCUhpRSlGgVSzJoFkdAqTy70cwQDnV9lChoBmgJaA9DCBE10eejjOK/lIaUUpRoFUsyaBZHQKk+nsYVIqd1fZQoaAZoCWgPQwhCmUaTi7ECwJSGlFKUaBVLMmgWR0CpPmLI5o4/dX2UKGgGaAloD0MIF56Xio3577+UhpRSlGgVSzJoFkdAqT4inzg/DHV9lChoBmgJaA9DCPyp8dJNIvS/lIaUUpRoFUsyaBZHQKk95N8ma6V1fZQoaAZoCWgPQwiFfNCzWfXWv5SGlFKUaBVLMmgWR0CpP8SHVPN3dX2UKGgGaAloD0MIsg3cgTol87+UhpRSlGgVSzJoFkdAqT+ImAskIHV9lChoBmgJaA9DCHZxGw3gLea/lIaUUpRoFUsyaBZHQKk/SHVwxWV1fZQoaAZoCWgPQwis4o3MI//2v5SGlFKUaBVLMmgWR0CpPwrQ5WBCdX2UKGgGaAloD0MI8x/Sb18H2r+UhpRSlGgVSzJoFkdAqUDqDCgsb3V9lChoBmgJaA9DCKiN6nQga/a/lIaUUpRoFUsyaBZHQKlArfD1oQF1fZQoaAZoCWgPQwhKJxJMNfP9v5SGlFKUaBVLMmgWR0CpQG287IT5dX2UKGgGaAloD0MI8bkT7L/O6L+UhpRSlGgVSzJoFkdAqUAwAQxvenV9lChoBmgJaA9DCCdsPxnjQ+a/lIaUUpRoFUsyaBZHQKlCGMBp5/t1fZQoaAZoCWgPQwi2ZFWEm8z5v5SGlFKUaBVLMmgWR0CpQdy3LFGYdX2UKGgGaAloD0MIWwpI+x/g9r+UhpRSlGgVSzJoFkdAqUGciY9gW3V9lChoBmgJaA9DCHTudr00xfC/lIaUUpRoFUsyaBZHQKlBXxCIDYB1fZQoaAZoCWgPQwgpPGh23VvSv5SGlFKUaBVLMmgWR0CpQ2wuVX3hdX2UKGgGaAloD0MIvvp46Ltb3b+UhpRSlGgVSzJoFkdAqUMws/Y8MnV9lChoBmgJaA9DCDVG66hqgvC/lIaUUpRoFUsyaBZHQKlC8XgtOEd1fZQoaAZoCWgPQwgc0xOWeIDwv5SGlFKUaBVLMmgWR0CpQrWNFSbZdX2UKGgGaAloD0MIaverAN/t6r+UhpRSlGgVSzJoFkdAqUVgy2x6fXV9lChoBmgJaA9DCMLB3sSQHPa/lIaUUpRoFUsyaBZHQKlFJZDArQR1fZQoaAZoCWgPQwi+h0uOO6Xrv5SGlFKUaBVLMmgWR0CpROY2CNCJdX2UKGgGaAloD0MInrex2ZHq5b+UhpRSlGgVSzJoFkdAqUSpVwPy1HV9lChoBmgJaA9DCGKHMenvJeu/lIaUUpRoFUsyaBZHQKlHODdxhlV1fZQoaAZoCWgPQwi7fVaZKS3yv5SGlFKUaBVLMmgWR0CpRv0DdP+GdX2UKGgGaAloD0MIehubHak+87+UhpRSlGgVSzJoFkdAqUa95OafBnV9lChoBmgJaA9DCEYkCi3r/vK/lIaUUpRoFUsyaBZHQKlGgUh3aBZ1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b3c68213796a4bf48611111c642e2f8d98d92295694b36f79f838a82becfc75
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c81421cda4ebebc1cddec553165eb03e83d688e3ddfffc34ff0927b2641bcf8
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7facebf798b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7facebf78c80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678445762509174461, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAE1rfPuBwFT3jJhA/E1rfPuBwFT3jJhA/E1rfPuBwFT3jJhA/E1rfPuBwFT3jJhA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzMWkv7Nl4L62u6Y/blNsv7QgSz/rVXW/S66Av/NLPj8eOtW/1jVHvxDter/q38q+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAATWt8+4HAVPeMmED8z1Z08ghmLO/VLQDwTWt8+4HAVPeMmED8z1Z08ghmLO/VLQDwTWt8+4HAVPeMmED8z1Z08ghmLO/VLQDwTWt8+4HAVPeMmED8z1Z08ghmLO/VLQDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4362341 0.0364846 0.56309336]\n [0.4362341 0.0364846 0.56309336]\n [0.4362341 0.0364846 0.56309336]\n [0.4362341 0.0364846 0.56309336]]", "desired_goal": "[[-1.2872863 -0.4382759 1.3026035 ]\n [-0.92314804 0.79346776 -0.95834225]\n [-1.005319 0.7433464 -1.6658361 ]\n [-0.7781652 -0.9801798 -0.39623958]]", "observation": "[[0.4362341 0.0364846 0.56309336 0.0192667 0.00424498 0.01173686]\n [0.4362341 0.0364846 0.56309336 0.0192667 0.00424498 0.01173686]\n [0.4362341 0.0364846 0.56309336 0.0192667 0.00424498 0.01173686]\n [0.4362341 0.0364846 0.56309336 0.0192667 0.00424498 0.01173686]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAvzEPZ/LFz4Us0w+buESu4egET4QbPU8QlH2PfHX8b3BKPQ7jsOlPSo+Fj5cOnc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09618379 0.14823769 0.19990188]\n [-0.00224122 0.14221393 0.02995875]\n [ 0.12027217 -0.11808766 0.00745115]\n [ 0.0809394 0.14672151 0.06035839]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlWbzOAzm9r+UhpRSlIwBbJRLMowBdJRHQKklEizsyBV1fZQoaAZoCWgPQwjbM0sC1BTyv5SGlFKUaBVLMmgWR0CpJNa68QI2dX2UKGgGaAloD0MISrVPx2MG87+UhpRSlGgVSzJoFkdAqSSXUjLSu3V9lChoBmgJaA9DCONRKuEJvfa/lIaUUpRoFUsyaBZHQKkkWoQ4CIV1fZQoaAZoCWgPQwiFXKlnQSj1v5SGlFKUaBVLMmgWR0CpJwOuaF23dX2UKGgGaAloD0MIFtwPeGAA7b+UhpRSlGgVSzJoFkdAqSbH/T9bYHV9lChoBmgJaA9DCIcXRKSm3fa/lIaUUpRoFUsyaBZHQKkmiO801qF1fZQoaAZoCWgPQwgeboeGxej+v5SGlFKUaBVLMmgWR0CpJkxBE8aGdX2UKGgGaAloD0MI/rW8cr2t9L+UhpRSlGgVSzJoFkdAqSj4nH/953V9lChoBmgJaA9DCNr+lZUmJfS/lIaUUpRoFUsyaBZHQKkovUTcqON1fZQoaAZoCWgPQwhHdxA7U+jiv5SGlFKUaBVLMmgWR0CpKH6Lfk3kdX2UKGgGaAloD0MIqP3WTpQE87+UhpRSlGgVSzJoFkdAqShB0GNaQnV9lChoBmgJaA9DCGCvsOB+wPK/lIaUUpRoFUsyaBZHQKkq/yn1nNB1fZQoaAZoCWgPQwj1L0llinnwv5SGlFKUaBVLMmgWR0CpKsP9UCJXdX2UKGgGaAloD0MIIEPHDirx6r+UhpRSlGgVSzJoFkdAqSqEv9LpR3V9lChoBmgJaA9DCHy6umOxTei/lIaUUpRoFUsyaBZHQKkqR7O3UhF1fZQoaAZoCWgPQwgjg9xFmOL3v5SGlFKUaBVLMmgWR0CpLP+fAbhndX2UKGgGaAloD0MI2GSNeoiG9L+UhpRSlGgVSzJoFkdAqSzEK3NLUXV9lChoBmgJaA9DCLMngc05eOC/lIaUUpRoFUsyaBZHQKkshMOf/WF1fZQoaAZoCWgPQwgip6/naxb0v5SGlFKUaBVLMmgWR0CpLEgZCOWCdX2UKGgGaAloD0MIzEV8J2Y94r+UhpRSlGgVSzJoFkdAqS8UJrtVrHV9lChoBmgJaA9DCBFvnX+77Pu/lIaUUpRoFUsyaBZHQKku2TYdyT91fZQoaAZoCWgPQwjnbWx2pLr+v5SGlFKUaBVLMmgWR0CpLpotlI3BdX2UKGgGaAloD0MIIbHdPUAXAMCUhpRSlGgVSzJoFkdAqS5ddzGPxXV9lChoBmgJaA9DCO571F+vMOy/lIaUUpRoFUsyaBZHQKkwXreqJdl1fZQoaAZoCWgPQwiQEru2t9vpv5SGlFKUaBVLMmgWR0CpMCJ2ll9SdX2UKGgGaAloD0MI/iyWIvnK47+UhpRSlGgVSzJoFkdAqS/iHKwIMXV9lChoBmgJaA9DCOChKNAn8uW/lIaUUpRoFUsyaBZHQKkvpFm4Ajp1fZQoaAZoCWgPQwhPr5RliKP5v5SGlFKUaBVLMmgWR0CpMZ7QswtbdX2UKGgGaAloD0MIzuDvF7Ol5r+UhpRSlGgVSzJoFkdAqTFiv1UVBXV9lChoBmgJaA9DCFA1ejVA6eK/lIaUUpRoFUsyaBZHQKkxIq2jO9p1fZQoaAZoCWgPQwhIiV3b2y3nv5SGlFKUaBVLMmgWR0CpMOTZpSJkdX2UKGgGaAloD0MIq15+p8kM57+UhpRSlGgVSzJoFkdAqTLTwe/5+HV9lChoBmgJaA9DCE7tDFNb6um/lIaUUpRoFUsyaBZHQKkyl7LMcIZ1fZQoaAZoCWgPQwiHTzqRYKrtv5SGlFKUaBVLMmgWR0CpMld69kBkdX2UKGgGaAloD0MIqdpugm8a7L+UhpRSlGgVSzJoFkdAqTIZybQTmHV9lChoBmgJaA9DCBxBKsWOhvC/lIaUUpRoFUsyaBZHQKkz7vQ4S6F1fZQoaAZoCWgPQwj76NSVz3Lrv5SGlFKUaBVLMmgWR0CpM7LIPsiTdX2UKGgGaAloD0MIhjdr8L4q2L+UhpRSlGgVSzJoFkdAqTNygsbvPXV9lChoBmgJaA9DCKwahLndi/C/lIaUUpRoFUsyaBZHQKkzNKg7HQ11fZQoaAZoCWgPQwjrGi0Heijvv5SGlFKUaBVLMmgWR0CpNSK4hEBsdX2UKGgGaAloD0MILEXylUDK4b+UhpRSlGgVSzJoFkdAqTTmqaPS2HV9lChoBmgJaA9DCGWPUDOkSvO/lIaUUpRoFUsyaBZHQKk0py1eBxx1fZQoaAZoCWgPQwi3zyozpXXjv5SGlFKUaBVLMmgWR0CpNGnG0eEJdX2UKGgGaAloD0MIFasGYW732b+UhpRSlGgVSzJoFkdAqTZJyhi9ZnV9lChoBmgJaA9DCO8eoPtyZvG/lIaUUpRoFUsyaBZHQKk2DdgOSW91fZQoaAZoCWgPQwhA+iZNg6LSv5SGlFKUaBVLMmgWR0CpNc6Ei+tbdX2UKGgGaAloD0MIRQ2mYfhI97+UhpRSlGgVSzJoFkdAqTWRsGgSOHV9lChoBmgJaA9DCCQofoy56+a/lIaUUpRoFUsyaBZHQKk3dI6Kcd51fZQoaAZoCWgPQwhyTYHMzuL8v5SGlFKUaBVLMmgWR0CpNziBGx2TdX2UKGgGaAloD0MIpiiXxi8867+UhpRSlGgVSzJoFkdAqTb4VM23rnV9lChoBmgJaA9DCH/1uG+1Tsy/lIaUUpRoFUsyaBZHQKk2uqgAZKp1fZQoaAZoCWgPQwhXJCao4dvrv5SGlFKUaBVLMmgWR0CpOKGt6ol2dX2UKGgGaAloD0MIG2X9ZmK65b+UhpRSlGgVSzJoFkdAqThlmpVCHHV9lChoBmgJaA9DCGlRn+QOm+G/lIaUUpRoFUsyaBZHQKk4JW0Z3s51fZQoaAZoCWgPQwiFfNCzWXXpv5SGlFKUaBVLMmgWR0CpN+eu/1xsdX2UKGgGaAloD0MIRWKCGr6F6b+UhpRSlGgVSzJoFkdAqTnI0uUUwnV9lChoBmgJaA9DCKlPcodNZOO/lIaUUpRoFUsyaBZHQKk5jLPD50t1fZQoaAZoCWgPQwiPqbuyCwbYv5SGlFKUaBVLMmgWR0CpOUxFAmiQdX2UKGgGaAloD0MIIeo+AKlN97+UhpRSlGgVSzJoFkdAqTkOfoRqXXV9lChoBmgJaA9DCJPjTulgvfO/lIaUUpRoFUsyaBZHQKk69gAp8Wt1fZQoaAZoCWgPQwgmcsEZ/P3Yv5SGlFKUaBVLMmgWR0CpOroBJZntdX2UKGgGaAloD0MIQE0tW+uL5r+UhpRSlGgVSzJoFkdAqTp5u4wyqXV9lChoBmgJaA9DCDCgF+5cmOq/lIaUUpRoFUsyaBZHQKk6PA/s3Q51fZQoaAZoCWgPQwjoiHyXUpfxv5SGlFKUaBVLMmgWR0CpPEmVRk3CdX2UKGgGaAloD0MIH0sfuqD+8L+UhpRSlGgVSzJoFkdAqTwNiUgSvnV9lChoBmgJaA9DCIOI1LSLadC/lIaUUpRoFUsyaBZHQKk7zUR3/xV1fZQoaAZoCWgPQwi4ByEgX0Lrv5SGlFKUaBVLMmgWR0CpO5BCD28JdX2UKGgGaAloD0MIx0s3iUEg9b+UhpRSlGgVSzJoFkdAqT12MERranV9lChoBmgJaA9DCL/Uz5uKlPC/lIaUUpRoFUsyaBZHQKk9Oe7L+xZ1fZQoaAZoCWgPQwgLYwtBDsrlv5SGlFKUaBVLMmgWR0CpPPnGjsUqdX2UKGgGaAloD0MIU1ipoKKqAcCUhpRSlGgVSzJoFkdAqTy70cwQDnV9lChoBmgJaA9DCBE10eejjOK/lIaUUpRoFUsyaBZHQKk+nsYVIqd1fZQoaAZoCWgPQwhCmUaTi7ECwJSGlFKUaBVLMmgWR0CpPmLI5o4/dX2UKGgGaAloD0MIF56Xio3577+UhpRSlGgVSzJoFkdAqT4inzg/DHV9lChoBmgJaA9DCPyp8dJNIvS/lIaUUpRoFUsyaBZHQKk95N8ma6V1fZQoaAZoCWgPQwiFfNCzWfXWv5SGlFKUaBVLMmgWR0CpP8SHVPN3dX2UKGgGaAloD0MIsg3cgTol87+UhpRSlGgVSzJoFkdAqT+ImAskIHV9lChoBmgJaA9DCHZxGw3gLea/lIaUUpRoFUsyaBZHQKk/SHVwxWV1fZQoaAZoCWgPQwis4o3MI//2v5SGlFKUaBVLMmgWR0CpPwrQ5WBCdX2UKGgGaAloD0MI8x/Sb18H2r+UhpRSlGgVSzJoFkdAqUDqDCgsb3V9lChoBmgJaA9DCKiN6nQga/a/lIaUUpRoFUsyaBZHQKlArfD1oQF1fZQoaAZoCWgPQwhKJxJMNfP9v5SGlFKUaBVLMmgWR0CpQG287IT5dX2UKGgGaAloD0MI8bkT7L/O6L+UhpRSlGgVSzJoFkdAqUAwAQxvenV9lChoBmgJaA9DCCdsPxnjQ+a/lIaUUpRoFUsyaBZHQKlCGMBp5/t1fZQoaAZoCWgPQwi2ZFWEm8z5v5SGlFKUaBVLMmgWR0CpQdy3LFGYdX2UKGgGaAloD0MIWwpI+x/g9r+UhpRSlGgVSzJoFkdAqUGciY9gW3V9lChoBmgJaA9DCHTudr00xfC/lIaUUpRoFUsyaBZHQKlBXxCIDYB1fZQoaAZoCWgPQwgpPGh23VvSv5SGlFKUaBVLMmgWR0CpQ2wuVX3hdX2UKGgGaAloD0MIvvp46Ltb3b+UhpRSlGgVSzJoFkdAqUMws/Y8MnV9lChoBmgJaA9DCDVG66hqgvC/lIaUUpRoFUsyaBZHQKlC8XgtOEd1fZQoaAZoCWgPQwgc0xOWeIDwv5SGlFKUaBVLMmgWR0CpQrWNFSbZdX2UKGgGaAloD0MIaverAN/t6r+UhpRSlGgVSzJoFkdAqUVgy2x6fXV9lChoBmgJaA9DCMLB3sSQHPa/lIaUUpRoFUsyaBZHQKlFJZDArQR1fZQoaAZoCWgPQwi+h0uOO6Xrv5SGlFKUaBVLMmgWR0CpROY2CNCJdX2UKGgGaAloD0MInrex2ZHq5b+UhpRSlGgVSzJoFkdAqUSpVwPy1HV9lChoBmgJaA9DCGKHMenvJeu/lIaUUpRoFUsyaBZHQKlHODdxhlV1fZQoaAZoCWgPQwi7fVaZKS3yv5SGlFKUaBVLMmgWR0CpRv0DdP+GdX2UKGgGaAloD0MIehubHak+87+UhpRSlGgVSzJoFkdAqUa95OafBnV9lChoBmgJaA9DCEYkCi3r/vK/lIaUUpRoFUsyaBZHQKlGgUh3aBZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (449 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.9628666095202789, "std_reward": 0.38417861894976923, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-10T11:50:03.327719"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ed2db127c5f9c7783dfb72c09167ed9d159152f818f469ec8e077329bdddb59
3
+ size 3056