kingabzpro
commited on
Commit
·
7c41b61
1
Parent(s):
bf78042
update model card README.md
Browse files
README.md
CHANGED
@@ -1,57 +1,11 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
-
- ur
|
4 |
-
|
5 |
-
license: apache-2.0
|
6 |
tags:
|
7 |
-
-
|
8 |
-
- robust-speech-event
|
9 |
datasets:
|
10 |
- common_voice
|
11 |
-
metrics:
|
12 |
-
- wer
|
13 |
-
- cer
|
14 |
model-index:
|
15 |
- name: wav2vec2-large-xlsr-53-urdu
|
16 |
-
results:
|
17 |
-
- task:
|
18 |
-
type: automatic-speech-recognition # Required. Example: automatic-speech-recognition
|
19 |
-
name: Urdu Speech Recognition # Optional. Example: Speech Recognition
|
20 |
-
dataset:
|
21 |
-
type: common_voice # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
|
22 |
-
name: Urdu # Required. Example: Common Voice zh-CN
|
23 |
-
args: ur # Optional. Example: zh-CN
|
24 |
-
metrics:
|
25 |
-
- type: wer # Required. Example: wer
|
26 |
-
value: 66.2 # Required. Example: 20.90
|
27 |
-
name: Test WER # Optional. Example: Test WER
|
28 |
-
args:
|
29 |
-
- learning_rate: 0.0003
|
30 |
-
- train_batch_size: 16
|
31 |
-
- eval_batch_size: 8
|
32 |
-
- seed: 42
|
33 |
-
- gradient_accumulation_steps: 2
|
34 |
-
- total_train_batch_size: 32
|
35 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
36 |
-
- lr_scheduler_type: linear
|
37 |
-
- lr_scheduler_warmup_steps: 200
|
38 |
-
- num_epochs: 50
|
39 |
-
- mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order
|
40 |
-
- type: cer # Required. Example: wer
|
41 |
-
value: 31.7 # Required. Example: 20.90
|
42 |
-
name: Test CER # Optional. Example: Test WER
|
43 |
-
args:
|
44 |
-
- learning_rate: 0.0003
|
45 |
-
- train_batch_size: 16
|
46 |
-
- eval_batch_size: 8
|
47 |
-
- seed: 42
|
48 |
-
- gradient_accumulation_steps: 2
|
49 |
-
- total_train_batch_size: 32
|
50 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
-
- lr_scheduler_type: linear
|
52 |
-
- lr_scheduler_warmup_steps: 200
|
53 |
-
- num_epochs: 50
|
54 |
-
- mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order
|
55 |
---
|
56 |
|
57 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -59,18 +13,25 @@ should probably proofread and complete it, then remove this comment. -->
|
|
59 |
|
60 |
# wav2vec2-large-xlsr-53-urdu
|
61 |
|
62 |
-
This model is a fine-tuned version of [
|
63 |
It achieves the following results on the evaluation set:
|
64 |
-
- Loss:
|
65 |
-
- Wer: 0.
|
66 |
-
- Cer: 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
|
|
68 |
|
69 |
More information needed
|
70 |
-
The training and valid dataset is 0.58 hours. It was hard to train any model on lower number of so I decided to take Persian checkpoint and finetune the XLSR model.
|
71 |
|
72 |
## Training procedure
|
73 |
-
Trained on m3hrdadfi/wav2vec2-large-xlsr-persian-v3 due to lesser number of samples. Persian and Urdu are quite similar.
|
74 |
|
75 |
### Training hyperparameters
|
76 |
|
@@ -91,12 +52,12 @@ The following hyperparameters were used during training:
|
|
91 |
|
92 |
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
93 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
|
94 |
-
|
|
95 |
-
|
|
96 |
-
|
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
|
101 |
|
102 |
### Framework versions
|
|
|
1 |
---
|
|
|
|
|
|
|
|
|
2 |
tags:
|
3 |
+
- generated_from_trainer
|
|
|
4 |
datasets:
|
5 |
- common_voice
|
|
|
|
|
|
|
6 |
model-index:
|
7 |
- name: wav2vec2-large-xlsr-53-urdu
|
8 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
13 |
|
14 |
# wav2vec2-large-xlsr-53-urdu
|
15 |
|
16 |
+
This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-urdu-urm-60](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-urdu-urm-60) on the common_voice dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 11.4593
|
19 |
+
- Wer: 0.5772
|
20 |
+
- Cer: 0.3384
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
|
30 |
+
## Training and evaluation data
|
31 |
|
32 |
More information needed
|
|
|
33 |
|
34 |
## Training procedure
|
|
|
35 |
|
36 |
### Training hyperparameters
|
37 |
|
|
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
54 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
|
55 |
+
| 13.2136 | 8.33 | 100 | 9.5424 | 0.7672 | 0.4381 |
|
56 |
+
| 2.6996 | 16.67 | 200 | 8.4317 | 0.6661 | 0.3620 |
|
57 |
+
| 1.371 | 25.0 | 300 | 9.5518 | 0.6443 | 0.3701 |
|
58 |
+
| 0.639 | 33.33 | 400 | 9.4132 | 0.6129 | 0.3609 |
|
59 |
+
| 0.4452 | 41.67 | 500 | 10.8330 | 0.5920 | 0.3473 |
|
60 |
+
| 0.3233 | 50.0 | 600 | 11.4593 | 0.5772 | 0.3384 |
|
61 |
|
62 |
|
63 |
### Framework versions
|