File size: 2,116 Bytes
389e2c1 92d0074 389e2c1 92d0074 389e2c1 92d0074 389e2c1 92d0074 389e2c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-1b-Swedish
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-1b-Swedish
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3370
- Wer: 0.1803
- Cer: 0.0569
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 3.1423 | 5.49 | 500 | 0.5523 | 0.4414 | 0.1313 |
| 0.8615 | 10.98 | 1000 | 0.3877 | 0.2946 | 0.0942 |
| 0.4848 | 16.48 | 1500 | 0.3580 | 0.2539 | 0.0798 |
| 0.3538 | 21.97 | 2000 | 0.3391 | 0.2254 | 0.0709 |
| 0.2879 | 27.47 | 2500 | 0.3392 | 0.2151 | 0.0680 |
| 0.2466 | 32.96 | 3000 | 0.3687 | 0.2131 | 0.0680 |
| 0.2146 | 38.46 | 3500 | 0.3551 | 0.1951 | 0.0618 |
| 0.1916 | 43.95 | 4000 | 0.3601 | 0.1867 | 0.0590 |
| 0.175 | 49.45 | 4500 | 0.3370 | 0.1803 | 0.0569 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|