kingabzpro
commited on
Commit
•
e829dfa
1
Parent(s):
fb98e92
add LM preprocessing
Browse files- .ipynb_checkpoints/README-checkpoint.md +86 -0
- .ipynb_checkpoints/alphabet-checkpoint.json +1 -0
- README.md +2 -2
- eval.py +125 -0
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- id
|
4 |
+
|
5 |
+
license: apache-2.0
|
6 |
+
tags:
|
7 |
+
- automatic-speech-recognition
|
8 |
+
- robust-speech-event
|
9 |
+
datasets:
|
10 |
+
- mozilla-foundation/common_voice_7_0
|
11 |
+
metrics:
|
12 |
+
- wer
|
13 |
+
- cer
|
14 |
+
model-index:
|
15 |
+
- name: wav2vec2-large-xls-r-300m-Indonesian
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
type: automatic-speech-recognition # Required. Example: automatic-speech-recognition
|
19 |
+
name: Speech Recognition # Optional. Example: Speech Recognition
|
20 |
+
dataset:
|
21 |
+
type: mozilla-foundation/common_voice_7_0 # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
|
22 |
+
name: Common Voice id # Required. Example: Common Voice zh-CN
|
23 |
+
args: id # Optional. Example: zh-CN
|
24 |
+
metrics:
|
25 |
+
- type: wer # Required. Example: wer
|
26 |
+
value: 25.06 # Required. Example: 20.90
|
27 |
+
name: Test WER # Optional. Example: Test WER
|
28 |
+
|
29 |
+
- type: cer # Required. Example: wer
|
30 |
+
value: 6.50 # Required. Example: 20.90
|
31 |
+
name: Test CER # Optional. Example: Test WER
|
32 |
+
|
33 |
+
|
34 |
+
---
|
35 |
+
|
36 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
37 |
+
should probably proofread and complete it, then remove this comment. -->
|
38 |
+
|
39 |
+
# wav2vec2-large-xls-r-300m-Indonesian
|
40 |
+
|
41 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
42 |
+
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 0.4087
|
44 |
+
- Wer: 0.2461
|
45 |
+
- Cer: 0.0666
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
### Training hyperparameters
|
50 |
+
|
51 |
+
The following hyperparameters were used during training:
|
52 |
+
- learning_rate: 0.0003
|
53 |
+
- train_batch_size: 64
|
54 |
+
- eval_batch_size: 8
|
55 |
+
- seed: 42
|
56 |
+
- gradient_accumulation_steps: 2
|
57 |
+
- total_train_batch_size: 128
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- lr_scheduler_warmup_steps: 400
|
61 |
+
- num_epochs: 50
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
|
68 |
+
| 5.0788 | 4.26 | 200 | 2.9389 | 1.0 | 1.0 |
|
69 |
+
| 2.8288 | 8.51 | 400 | 2.2535 | 1.0 | 0.8004 |
|
70 |
+
| 0.907 | 12.77 | 600 | 0.4558 | 0.4243 | 0.1095 |
|
71 |
+
| 0.4071 | 17.02 | 800 | 0.4013 | 0.3468 | 0.0913 |
|
72 |
+
| 0.3 | 21.28 | 1000 | 0.4167 | 0.3075 | 0.0816 |
|
73 |
+
| 0.2544 | 25.53 | 1200 | 0.4132 | 0.2835 | 0.0762 |
|
74 |
+
| 0.2145 | 29.79 | 1400 | 0.3878 | 0.2693 | 0.0729 |
|
75 |
+
| 0.1923 | 34.04 | 1600 | 0.4023 | 0.2623 | 0.0702 |
|
76 |
+
| 0.1681 | 38.3 | 1800 | 0.3984 | 0.2581 | 0.0686 |
|
77 |
+
| 0.1598 | 42.55 | 2000 | 0.3982 | 0.2493 | 0.0663 |
|
78 |
+
| 0.1464 | 46.81 | 2200 | 0.4087 | 0.2461 | 0.0666 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.17.0.dev0
|
84 |
+
- Pytorch 1.10.2+cu102
|
85 |
+
- Datasets 1.18.2.dev0
|
86 |
+
- Tokenizers 0.11.0
|
.ipynb_checkpoints/alphabet-checkpoint.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"labels": [" ", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "\u00e9", "\u2047", "", "<s>", "</s>"], "is_bpe": false}
|
README.md
CHANGED
@@ -24,11 +24,11 @@ model-index:
|
|
24 |
metrics:
|
25 |
- type: wer # Required. Example: wer
|
26 |
value: 25.06 # Required. Example: 20.90
|
27 |
-
name: Test WER
|
28 |
|
29 |
- type: cer # Required. Example: wer
|
30 |
value: 6.50 # Required. Example: 20.90
|
31 |
-
name: Test CER
|
32 |
|
33 |
|
34 |
---
|
|
|
24 |
metrics:
|
25 |
- type: wer # Required. Example: wer
|
26 |
value: 25.06 # Required. Example: 20.90
|
27 |
+
name: Test WER With LM # Optional. Example: Test WER
|
28 |
|
29 |
- type: cer # Required. Example: wer
|
30 |
value: 6.50 # Required. Example: 20.90
|
31 |
+
name: Test CER With LM # Optional. Example: Test WER
|
32 |
|
33 |
|
34 |
---
|
eval.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from datasets import load_dataset, load_metric, Audio, Dataset
|
3 |
+
from transformers import pipeline, AutoFeatureExtractor
|
4 |
+
import re
|
5 |
+
import argparse
|
6 |
+
import unicodedata
|
7 |
+
from typing import Dict
|
8 |
+
|
9 |
+
|
10 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
11 |
+
""" DO NOT CHANGE. This function computes and logs the result metrics. """
|
12 |
+
|
13 |
+
log_outputs = args.log_outputs
|
14 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
15 |
+
|
16 |
+
# load metric
|
17 |
+
wer = load_metric("wer")
|
18 |
+
cer = load_metric("cer")
|
19 |
+
|
20 |
+
# compute metrics
|
21 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
22 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
23 |
+
|
24 |
+
# print & log results
|
25 |
+
result_str = (
|
26 |
+
f"WER: {wer_result}\n"
|
27 |
+
f"CER: {cer_result}"
|
28 |
+
)
|
29 |
+
print(result_str)
|
30 |
+
|
31 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
32 |
+
f.write(result_str)
|
33 |
+
|
34 |
+
# log all results in text file. Possibly interesting for analysis
|
35 |
+
if log_outputs is not None:
|
36 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
37 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
38 |
+
|
39 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
40 |
+
|
41 |
+
# mapping function to write output
|
42 |
+
def write_to_file(batch, i):
|
43 |
+
p.write(f"{i}" + "\n")
|
44 |
+
p.write(batch["prediction"] + "\n")
|
45 |
+
t.write(f"{i}" + "\n")
|
46 |
+
t.write(batch["target"] + "\n")
|
47 |
+
|
48 |
+
result.map(write_to_file, with_indices=True)
|
49 |
+
|
50 |
+
|
51 |
+
def normalize_text(text: str) -> str:
|
52 |
+
""" DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """
|
53 |
+
|
54 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\\\\&\—\!\,\’\(\)]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
55 |
+
|
56 |
+
text = text.lower()
|
57 |
+
# normalize non-standard (stylized) unicode characters
|
58 |
+
text = unicodedata.normalize('NFKC', text)
|
59 |
+
|
60 |
+
# Let's also make sure we split on all kinds of newlines, spaces, etc...
|
61 |
+
text = " ".join(text.split())
|
62 |
+
|
63 |
+
return text
|
64 |
+
|
65 |
+
|
66 |
+
def main(args):
|
67 |
+
# load dataset
|
68 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
69 |
+
|
70 |
+
# for testing: only process the first two examples as a test
|
71 |
+
# dataset = dataset.select(range(10))
|
72 |
+
|
73 |
+
# load processor
|
74 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
75 |
+
sampling_rate = feature_extractor.sampling_rate
|
76 |
+
|
77 |
+
# resample audio
|
78 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
79 |
+
|
80 |
+
# load eval pipeline
|
81 |
+
asr = pipeline("automatic-speech-recognition", model=args.model_id)
|
82 |
+
|
83 |
+
# map function to decode audio
|
84 |
+
def map_to_pred(batch):
|
85 |
+
prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)
|
86 |
+
|
87 |
+
batch["prediction"] = prediction["text"]
|
88 |
+
batch["target"] = normalize_text(batch["sentence"])
|
89 |
+
return batch
|
90 |
+
|
91 |
+
# run inference on all examples
|
92 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
93 |
+
|
94 |
+
# compute and log_results
|
95 |
+
# do not change function below
|
96 |
+
log_results(result, args)
|
97 |
+
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
parser = argparse.ArgumentParser()
|
101 |
+
|
102 |
+
parser.add_argument(
|
103 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
104 |
+
)
|
105 |
+
parser.add_argument(
|
106 |
+
"--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
|
107 |
+
)
|
108 |
+
parser.add_argument(
|
109 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
110 |
+
)
|
111 |
+
parser.add_argument(
|
112 |
+
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
|
113 |
+
)
|
114 |
+
parser.add_argument(
|
115 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
|
116 |
+
)
|
117 |
+
parser.add_argument(
|
118 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
|
119 |
+
)
|
120 |
+
parser.add_argument(
|
121 |
+
"--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
|
122 |
+
)
|
123 |
+
args = parser.parse_args()
|
124 |
+
|
125 |
+
main(args)
|