--- language: - id license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer - cer model-index: - name: wav2vec2-large-xls-r-300m-Indonesian results: - task: type: automatic-speech-recognition # Required. Example: automatic-speech-recognition name: Speech Recognition # Optional. Example: Speech Recognition dataset: type: mozilla-foundation/common_voice_7_0 # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: Common Voice id # Required. Example: Common Voice zh-CN args: id # Optional. Example: zh-CN metrics: - type: wer # Required. Example: wer value: 25.06 # Required. Example: 20.90 name: Test WER With LM # Optional. Example: Test WER - type: cer # Required. Example: wer value: 6.50 # Required. Example: 20.90 name: Test CER With LM # Optional. Example: Test WER --- # wav2vec2-large-xls-r-300m-Indonesian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4087 - Wer: 0.2461 - Cer: 0.0666 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 5.0788 | 4.26 | 200 | 2.9389 | 1.0 | 1.0 | | 2.8288 | 8.51 | 400 | 2.2535 | 1.0 | 0.8004 | | 0.907 | 12.77 | 600 | 0.4558 | 0.4243 | 0.1095 | | 0.4071 | 17.02 | 800 | 0.4013 | 0.3468 | 0.0913 | | 0.3 | 21.28 | 1000 | 0.4167 | 0.3075 | 0.0816 | | 0.2544 | 25.53 | 1200 | 0.4132 | 0.2835 | 0.0762 | | 0.2145 | 29.79 | 1400 | 0.3878 | 0.2693 | 0.0729 | | 0.1923 | 34.04 | 1600 | 0.4023 | 0.2623 | 0.0702 | | 0.1681 | 38.3 | 1800 | 0.3984 | 0.2581 | 0.0686 | | 0.1598 | 42.55 | 2000 | 0.3982 | 0.2493 | 0.0663 | | 0.1464 | 46.81 | 2200 | 0.4087 | 0.2461 | 0.0666 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0