|
|
|
import argparse
|
|
import re
|
|
from typing import Dict
|
|
|
|
import torch
|
|
from datasets import Audio, Dataset, load_dataset, load_metric
|
|
|
|
from transformers import AutoFeatureExtractor, pipeline
|
|
|
|
|
|
def log_results(result: Dataset, args: Dict[str, str]):
|
|
"""DO NOT CHANGE. This function computes and logs the result metrics."""
|
|
|
|
log_outputs = args.log_outputs
|
|
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
|
|
|
|
|
wer = load_metric("wer")
|
|
cer = load_metric("cer")
|
|
|
|
|
|
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
|
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
|
|
|
|
|
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
|
|
print(result_str)
|
|
|
|
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
|
f.write(result_str)
|
|
|
|
|
|
if log_outputs is not None:
|
|
pred_file = f"log_{dataset_id}_predictions.txt"
|
|
target_file = f"log_{dataset_id}_targets.txt"
|
|
|
|
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
|
|
|
|
|
def write_to_file(batch, i):
|
|
p.write(f"{i}" + "\n")
|
|
p.write(batch["prediction"] + "\n")
|
|
t.write(f"{i}" + "\n")
|
|
t.write(batch["target"] + "\n")
|
|
|
|
result.map(write_to_file, with_indices=True)
|
|
|
|
|
|
def normalize_text(text: str) -> str:
|
|
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
|
|
|
chars_to_ignore_regex = '[,?.!\-\;\:\"β%ββοΏ½βββ¦β]'
|
|
|
|
text = re.sub(chars_to_ignore_regex, "", text.lower())
|
|
|
|
|
|
|
|
token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
|
|
|
|
for t in token_sequences_to_ignore:
|
|
text = " ".join(text.split(t))
|
|
|
|
return text
|
|
|
|
|
|
def main(args):
|
|
|
|
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
|
|
|
|
|
|
|
|
|
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
|
sampling_rate = feature_extractor.sampling_rate
|
|
|
|
|
|
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
|
|
|
|
|
if args.device is None:
|
|
args.device = 0 if torch.cuda.is_available() else -1
|
|
asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
|
|
|
|
|
|
def map_to_pred(batch):
|
|
prediction = asr(
|
|
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
|
|
)
|
|
|
|
batch["prediction"] = prediction["text"]
|
|
batch["target"] = normalize_text(batch["sentence"])
|
|
return batch
|
|
|
|
|
|
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
|
|
|
|
|
|
|
log_results(result, args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with π€ Transformers"
|
|
)
|
|
parser.add_argument(
|
|
"--dataset",
|
|
type=str,
|
|
required=True,
|
|
help="Dataset name to evaluate the `model_id`. Should be loadable with π€ Datasets",
|
|
)
|
|
parser.add_argument(
|
|
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
|
)
|
|
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
|
|
parser.add_argument(
|
|
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
|
|
)
|
|
parser.add_argument(
|
|
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
|
|
)
|
|
parser.add_argument(
|
|
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
|
|
)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=int,
|
|
default=None,
|
|
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|
|
|