kingabzpro commited on
Commit
887b244
1 Parent(s): 4afc8a7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: wav2vec2-large-xls-r-300m-Swedish
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-large-xls-r-300m-Swedish
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.4286
20
+ - Wer: 0.2729
21
+ - Cer: 0.0858
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0003
41
+ - train_batch_size: 64
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 2
45
+ - total_train_batch_size: 128
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_steps: 1000
49
+ - num_epochs: 30
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
55
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
56
+ | 4.6203 | 5.49 | 500 | 2.8904 | 1.0 | 1.0 |
57
+ | 1.147 | 10.98 | 1000 | 0.5255 | 0.4107 | 0.1304 |
58
+ | 0.5246 | 16.48 | 1500 | 0.4598 | 0.3342 | 0.1058 |
59
+ | 0.378 | 21.97 | 2000 | 0.4316 | 0.2991 | 0.0949 |
60
+ | 0.298 | 27.47 | 2500 | 0.4286 | 0.2729 | 0.0858 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.17.0.dev0
66
+ - Pytorch 1.10.2+cu102
67
+ - Datasets 1.18.2.dev0
68
+ - Tokenizers 0.11.0