File size: 1,567 Bytes
c8f1eb5 5359fa5 003b4e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
language:
- en
tags:
- nltk
- swntiment
- tone
- nlp
---
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
# Download NLTK resources (only need to run once)
nltk.download('vader_lexicon')
# Sample text for sentiment analysis
with open("lks.txt", 'r') as file:
fl = file.read()
contactId = fl.split("|")[0]
transcript=fl.split("|")[1]
transcript=transcript.replace("'",'')
# Initialize the sentiment analyzer
sia = SentimentIntensityAnalyzer()
print(transcript)
# Analyze sentiment
sentiment_score = sia.polarity_scores(transcript)
# Initialize dictionary to store tone counts
tones = {
'analytical': 0,
'anger': 0,
'confident': 0,
'fear': 0,
'joy': 0,
'sadness': 0,
'tentative': 0
}
# Apply thresholds and count tones
if sentiment_score['compound'] >= 0.05: # Threshold for positive sentiment
tones['joy'] += 1
elif sentiment_score['compound'] <= -0.05: # Threshold for negative sentiment
tones['anger'] += 1
elif sentiment_score['neg'] >= 0.5: # Threshold for high negativity
tones['sadness'] += 1
elif sentiment_score['pos'] <= 0.2: # Threshold for low positivity
tones['fear'] += 1
elif sentiment_score['neu'] >= 0.5: # Threshold for high neutrality
tones['tentative'] += 1
else: # Otherwise, consider it analytical or confident
tones['analytical'] += 1
tones['confident'] += 1
# Print tone counts
print("Tone Counts:", tones)
# sample output
#Tone Counts: {'analytical': 0, 'anger': 0, 'confident': 0, 'fear': 0, 'joy': 1, 'sadness': 0, 'tentative': 0} |