File size: 2,003 Bytes
ac53693 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: resnet-50
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# resnet-50
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0320
- Accuracy: 0.5186
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3301 | 1.0 | 32 | 1.3377 | 0.3477 |
| 1.2001 | 2.0 | 64 | 1.2172 | 0.4414 |
| 1.1188 | 3.0 | 96 | 1.1265 | 0.5010 |
| 1.0655 | 4.0 | 128 | 1.1025 | 0.5010 |
| 1.0437 | 5.0 | 160 | 1.0753 | 0.5010 |
| 1.0374 | 6.0 | 192 | 1.0629 | 0.5029 |
| 1.0181 | 7.0 | 224 | 1.0452 | 0.5137 |
| 1.0011 | 8.0 | 256 | 1.0381 | 0.5127 |
| 1.0074 | 9.0 | 288 | 1.0268 | 0.5098 |
| 0.9977 | 10.0 | 320 | 1.0320 | 0.5186 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|