v1-7B / modeling_v1.py
kjunh's picture
Support Transformers AutoModel
b7d5f5c
raw
history blame
24.4 kB
import math
from typing import Optional, Union, Tuple, List
from dataclasses import dataclass
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
Qwen2_5_VisionTransformerPretrainedModel,
Qwen2_5_VLModel,
Qwen2_5_VLForConditionalGeneration,
Qwen2_5_VLCausalLMOutputWithPast,
)
from .configuration_v1 import V1Config
def init_identity(layer, scale: float = 1):
if isinstance(layer, nn.Linear):
with torch.no_grad():
# Ensure weight matrix is square
rows, cols = layer.weight.shape
identity_matrix = (
torch.eye(rows, cols) * scale
) # Creates an identity matrix
layer.weight.copy_(
identity_matrix
) # Copy identity matrix into layer weights
if hasattr(layer, "bias"):
layer.bias.fill_(0) # Set bias to zero (or another value if needed)
@dataclass
class V1CausalLMOutputWithPast(Qwen2_5_VLCausalLMOutputWithPast):
z_loss: torch.Tensor = None
gen_loss: torch.Tensor = None
copy_loss: torch.Tensor = None
class V1ForConditionalGeneration(Qwen2_5_VLForConditionalGeneration):
config_class = V1Config
def __init__(self, config):
super().__init__(config)
self.visual = Qwen2_5_VisionTransformerPretrainedModel._from_config(
config.vision_config
)
self.model = Qwen2_5_VLModel(config)
self.copy_init_scale = 1 / math.sqrt(self.config.hidden_size)
# self.tokenizer_vocab_size = (
# config.tokenizer_vocab_size
# ) # Qwen2.5-VL: different from embedding_size==vocab_size. 151665 vs. 152064
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.rope_deltas = None # cache rope_deltas here
if self.config.do_copy:
if self.config.tie_copy_heads:
self._copy_head = nn.Linear(config.hidden_size, config.copy_hidden_size)
else:
self._copy_q_head = nn.Linear(
config.hidden_size, config.copy_hidden_size
)
self._copy_k_head = nn.Linear(
config.hidden_size, config.copy_hidden_size
)
if self.config.use_gate:
self.gate = nn.Linear(config.hidden_size, 1, bias=False)
# Initialize weights and apply final processing
self.post_init()
@torch.no_grad()
def after_loading(self):
if self.config.do_copy:
self.init_heads()
if self.config.use_gate:
self.lm_head.weight.data = self.lm_head.weight.data * 2
self.gate.weight.data.fill_(0)
@property
def copy_q_head(self):
return self._copy_head if self.config.tie_copy_heads else self._copy_q_head
@property
def copy_k_head(self):
return self._copy_head if self.config.tie_copy_heads else self._copy_k_head
def init_heads(self):
if hasattr(self, "_copy_head"):
init_identity(self._copy_head, self.copy_init_scale)
if hasattr(self, "_copy_k_head"):
init_identity(self._copy_k_head, self.copy_init_scale)
if hasattr(self, "_copy_q_head"):
init_identity(self._copy_q_head, self.copy_init_scale)
def copy_representations(
self,
inputs_embeds: torch.FloatTensor,
input_ids: torch.LongTensor,
copy_values: Optional[torch.FloatTensor] = None,
):
if copy_values is None:
mask = input_ids == self.config.image_token_id
copy_values, _ = self.extract_image_tokens(inputs_embeds, mask) # initial
assert copy_values is not None
copy_values = copy_values.to(inputs_embeds.device)
input_ids = input_ids.to(inputs_embeds.device)
input_ids = input_ids.clone()
input_ids = input_ids - self.config.copy_token_start
copy_mask = input_ids >= 0
input_ids[~copy_mask] = 0
assert copy_values is not None
extracted = copy_values.gather(
1, input_ids[..., None].repeat(1, 1, copy_values.shape[-1])
)
copy_mask = copy_mask.to(extracted.dtype)[..., None]
return copy_mask * extracted + (1 - copy_mask) * inputs_embeds
def extract_image_tokens(self, features: torch.FloatTensor, mask: torch.Tensor):
out_feat, out_mask = extract_image_tokens_right_pad(features, mask)
return out_feat, out_mask
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
pixel_values: Optional[torch.Tensor] = None,
pixel_values_videos: Optional[torch.FloatTensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
rope_deltas: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
second_per_grid_ts: Optional[torch.Tensor] = None,
) -> Union[Tuple, Qwen2_5_VLCausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
>>> model = Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
>>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
>>> messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
```"""
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
input_ids = input_ids.clone()
input_ids_with_ptrs = input_ids.clone()
input_ids[input_ids >= self.config.copy_token_start] = (
self.config.region_token_id
)
if inputs_embeds is None:
inputs_embeds = self.model.embed_tokens(input_ids)
if pixel_values is not None:
pixel_values = pixel_values.type(self.visual.dtype)
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
mask = input_ids == self.config.image_token_id
mask_unsqueezed = mask.unsqueeze(-1)
mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
image_mask = mask_expanded.to(inputs_embeds.device)
image_embeds = image_embeds.to(
inputs_embeds.device, inputs_embeds.dtype
)
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
if pixel_values_videos is not None:
raise NotImplementedError("video inputs are not supported yet.")
pixel_values_videos = pixel_values_videos.type(self.visual.dtype)
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
n_video_features = video_embeds.shape[0]
if n_video_tokens != n_video_features:
raise ValueError(
f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
)
mask = input_ids == self.config.video_token_id
mask_unsqueezed = mask.unsqueeze(-1)
mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
video_mask = mask_expanded.to(inputs_embeds.device)
video_embeds = video_embeds.to(
inputs_embeds.device, inputs_embeds.dtype
)
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
if attention_mask is not None:
attention_mask = attention_mask.to(inputs_embeds.device)
if self.config.do_copy:
copy_keys, copy_keys_mask = None, None
copy_values, copy_values_mask = None, None
has_cache = bool(past_key_values)
if has_cache:
copy_keys, copy_values = past_key_values[len(past_key_values) - 2]
copy_keys_mask, copy_values_mask = past_key_values[
len(past_key_values) - 1
]
# we add channel dim to the mask for consistency in tensor shape in cache
copy_keys_mask = copy_keys_mask[..., 0]
copy_values_mask = copy_values_mask[..., 0]
inputs_embeds = self.copy_representations(
inputs_embeds, input_ids_with_ptrs, copy_values
)
# if we get 4D attention mask we cannot calculate rope deltas anymore. TODO @raushan fixme
if position_ids is None and (
attention_mask is None or attention_mask.ndim == 2
):
# calculate RoPE index once per generation in the pre-fill stage only
if (
(cache_position is not None and cache_position[0] == 0)
or self.rope_deltas is None
or (past_key_values is None or past_key_values.get_seq_length() == 0)
):
position_ids, rope_deltas = self.get_rope_index(
input_ids,
image_grid_thw,
video_grid_thw,
second_per_grid_ts,
attention_mask,
)
self.rope_deltas = rope_deltas
# then use the prev pre-calculated rope-deltas to get the correct position ids
else:
batch_size, seq_length, _ = inputs_embeds.shape
delta = (
(cache_position[0] + self.rope_deltas).to(inputs_embeds.device)
if cache_position is not None
else 0
)
position_ids = torch.arange(seq_length, device=inputs_embeds.device)
position_ids = position_ids.view(1, -1).expand(batch_size, -1)
if cache_position is not None: # otherwise `deltas` is an int `0`
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
position_ids = position_ids.add(delta)
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
outputs = self.model(
input_ids=None,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
gen_logits = self.lm_head(hidden_states)
if self.config.do_copy:
assert (
self.config.copy_extraction_layer == -1
), f"copy_extraction_layer should be -1: {self.config.copy_extraction_layer}"
copy_hidden_states = hidden_states
copy_q_states = copy_hidden_states
if self.config.normalize_copy_states:
copy_q_states = F.normalize(copy_q_states, 2, -1)
copy_q_states = self.copy_q_head(copy_q_states)
present_key_values = outputs.past_key_values
if not has_cache:
mask = input_ids == self.config.image_token_id
copy_k_states = (
inputs_embeds
if self.config.use_embeddings_as_keys
else copy_hidden_states
)
if self.config.normalize_copy_states:
copy_k_states = F.normalize(copy_k_states, 2, -1)
copy_k_states, copy_k_mask = self.extract_image_tokens(
self.copy_k_head(copy_k_states), mask
)
copy_v_states, copy_v_mask = self.extract_image_tokens(
inputs_embeds.detach(), mask
)
# we add channel dim to the mask for consistency in tensor shape in cache
copy_memories = [
(copy_k_states.detach(), copy_v_states.detach()),
(copy_k_mask[..., None], copy_v_mask[..., None]),
]
if use_cache:
# only update at the first iteration
start = len(present_key_values)
for i, mem in enumerate(copy_memories):
present_key_values.update(*mem, start + i)
else:
copy_k_states = copy_keys
copy_k_mask = copy_keys_mask
assert copy_k_states is not None
assert copy_k_mask is not None
assert (
copy_k_states.shape[1] > 0
), f"zero image tokens on batch elements: {copy_k_mask.sum(dim=1)}"
copy_logits = (copy_q_states @ copy_k_states.transpose(-1, -2)).to(
gen_logits.device
) * self.copy_init_scale
if hasattr(self, "gate"):
gate = torch.sigmoid(self.gate(hidden_states))
gen_logits = gen_logits * (1 - gate)
copy_logits = copy_logits * gate
copy_logits = copy_logits.masked_fill(
~copy_k_mask[:, None, :].to(copy_logits.device),
torch.finfo(copy_logits.dtype).min,
)
logits = torch.cat(
[gen_logits[..., : self.config.copy_token_start], copy_logits], dim=-1
)
else:
logits = gen_logits
loss = None
z_loss = None
gen_loss = None
if labels is not None:
gen_logits = gen_logits.float()
shift_gen_logits = gen_logits[:, :-1, :].contiguous().float()
shift_labels = labels[:, 1:].contiguous()
gen_loss_fct = CrossEntropyLoss(reduction="none")
gen_logits_flat = shift_gen_logits.view(-1, shift_gen_logits.shape[-1])
gen_labels_flat = shift_labels.view(-1)
gen_loss_all = gen_loss_fct(gen_logits_flat, gen_labels_flat)
gen_loss = gen_loss_all.mean()
loss = gen_loss
if self.config.z_loss_weight > 0:
valid_mask = shift_labels >= 0
# top-k approx z_loss for better memory usage
top_logits, _ = torch.topk(
shift_gen_logits, k=self.config.z_loss_top_k, dim=-1
)
lse = torch.logsumexp(top_logits, dim=-1)
z_loss = lse[valid_mask].pow(2).mean() * self.config.z_loss_weight
# z_loss = (
# torch.logsumexp(shift_logits, dim=-1).pow(2)[valid_mask].mean()
# * self.config.z_loss_weight
# )
loss = loss + z_loss
z_loss = z_loss.detach()
return V1CausalLMOutputWithPast(
loss=loss,
z_loss=z_loss,
gen_loss=gen_loss,
copy_loss=None,
logits=logits,
# copy_logits=copy_logits,
# gen_logits=gen_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
rope_deltas=self.rope_deltas,
)
loss = None
z_loss = None
gen_loss = None
copy_loss = None
if labels is not None:
if self.config.separate_copy_loss:
# Shift labels and logits for next-token prediction
shift_gen_logits = gen_logits[:, :-1, :].contiguous().float()
shift_copy_logits = copy_logits[:, :-1, :].contiguous().float()
shift_labels = labels[:, 1:].contiguous()
shift_logits = shift_copy_logits
# Build masks
gen_mask = shift_labels < self.config.copy_token_start
copy_mask = shift_labels >= self.config.copy_token_start
# Generation loss
if gen_mask.any():
gen_loss_fct = CrossEntropyLoss(reduction="none")
G = shift_gen_logits.shape[-1]
gen_logits_flat = shift_gen_logits.view(-1, G)
gen_labels_flat = shift_labels.view(-1)
gen_mask_flat = gen_mask.view(-1)
# mask logits
gen_logits_flat_masked = gen_logits_flat[gen_mask_flat]
gen_labels_flat_masked = gen_labels_flat[gen_mask_flat]
gen_loss_all = gen_loss_fct(
gen_logits_flat_masked, gen_labels_flat_masked
)
gen_loss = gen_loss_all.mean()
# Copy loss (adjust label indices to match copy_logits range)
if copy_mask.any():
copy_loss_fct = CrossEntropyLoss(reduction="none")
C = shift_copy_logits.shape[-1]
copy_logits_flat = shift_copy_logits.view(-1, C)
copy_labels_flat = (
shift_labels.view(-1) - self.config.copy_token_start
)
copy_mask_flat = copy_mask.view(-1)
copy_logits_flat_masked = copy_logits_flat[copy_mask_flat]
copy_labels_flat_masked = copy_labels_flat[copy_mask_flat]
copy_loss_all = copy_loss_fct(
copy_logits_flat_masked, copy_labels_flat_masked
)
copy_loss = copy_loss_all.mean()
else:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.float()
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(label_smoothing=self.config.label_smoothing)
total_vocab_size = logits.shape[-1] # gen + copy
shift_logits = shift_logits.view(-1, total_vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
gen_loss = loss_fct(shift_logits, shift_labels)
loss = 0.0
if gen_loss is not None:
loss += gen_loss
if copy_loss is not None:
loss += copy_loss
if self.config.z_loss_weight > 0:
valid_mask = shift_labels >= 0
# top-k approx z_loss for better memory usage
top_logits, _ = torch.topk(
shift_logits, k=self.config.z_loss_top_k, dim=-1
)
lse = torch.logsumexp(top_logits, dim=-1)
z_loss = lse[valid_mask].pow(2).mean() * self.config.z_loss_weight
# z_loss = (
# torch.logsumexp(shift_logits, dim=-1).pow(2)[valid_mask].mean()
# * self.config.z_loss_weight
# )
loss = loss + z_loss
z_loss = z_loss.detach()
if gen_loss is not None:
gen_loss = gen_loss.detach()
if copy_loss is not None:
copy_loss = copy_loss.detach()
if self.config.use_cfg:
# expand as max_size for logit processors
extended_vocab_size = self.config.vocab_size + self.config.copy_token_num
B, L, V = logits.shape
pads = torch.full(
(B, L, extended_vocab_size - V),
torch.finfo(gen_logits.dtype).min,
device=logits.device,
).to(logits.dtype)
logits = torch.cat([logits, pads], dim=-1)
# logits = logits.clamp_min(-1e4)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
logits = logits.float()
return V1CausalLMOutputWithPast(
loss=loss,
z_loss=z_loss,
gen_loss=gen_loss,
copy_loss=copy_loss,
logits=logits,
# copy_logits=copy_logits,
# gen_logits=gen_logits,
past_key_values=present_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
rope_deltas=self.rope_deltas,
)
def extract_image_tokens_right_pad(features: torch.FloatTensor, mask: torch.Tensor):
X, M = features, mask.long() # bool is not supported for sort in CUDA
B, L, _ = X.shape
device = X.device
M = M.to(device)
# Compute number of valid elements per batch
valid_counts = M.sum(dim=1) # Shape: [B]
# Replace `.item()` with `max()` and `clamp_min()` for Torch Dynamo compatibility
R = valid_counts.max().clamp_min(1) # Ensures at least 1 for tensor compatibility
# Create index tensors for selection
sorted_indices = M.argsort(dim=1, descending=True) # Move True values to front
batch_indices = torch.arange(B, device=device).unsqueeze(1).expand(B, L)
# Gather sorted X based on mask sorting
X_sorted = X[batch_indices, sorted_indices] # Shape: [B, L, C]
X_selected = X_sorted[:, :R, :] # Select the top valid elements per batch
# Create new mask M2 using `torch.arange`
M2 = torch.arange(L, device=device).expand(B, L) < valid_counts.unsqueeze(1)
M2 = M2[:, :R] # Trim to selected size
# Set out-of-bound values to zero
X_selected = torch.where(M2.unsqueeze(-1), X_selected, torch.zeros_like(X_selected))
return X_selected, M2
__all__ = ["V1ForConditionalGeneration"]