chansung commited on
Commit
f0196f9
·
verified ·
1 Parent(s): 760353d

Model save

Browse files
Files changed (4) hide show
  1. README.md +69 -0
  2. all_results.json +9 -0
  3. train_results.json +9 -0
  4. trainer_state.json +183 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: mistralai/Mistral-7B-v0.3
5
+ tags:
6
+ - trl
7
+ - sft
8
+ - generated_from_trainer
9
+ datasets:
10
+ - generator
11
+ model-index:
12
+ - name: mistral7b-pissa-classification-11-v1
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # mistral7b-pissa-classification-11-v1
20
+
21
+ This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) on the generator dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 1.9625
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 0.0002
43
+ - train_batch_size: 12
44
+ - eval_batch_size: 12
45
+ - seed: 42
46
+ - distributed_type: multi-GPU
47
+ - num_devices: 8
48
+ - gradient_accumulation_steps: 2
49
+ - total_train_batch_size: 192
50
+ - total_eval_batch_size: 96
51
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: cosine
53
+ - lr_scheduler_warmup_ratio: 0.1
54
+ - num_epochs: 1
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss |
59
+ |:-------------:|:------:|:----:|:---------------:|
60
+ | 1.7055 | 0.9945 | 91 | 1.9625 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - PEFT 0.13.2
66
+ - Transformers 4.46.3
67
+ - Pytorch 2.3.1+cu121
68
+ - Datasets 3.1.0
69
+ - Tokenizers 0.20.3
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.994535519125683,
3
+ "total_flos": 3.8200965830436454e+17,
4
+ "train_loss": 1.8459819070585481,
5
+ "train_runtime": 299.5258,
6
+ "train_samples": 92634,
7
+ "train_samples_per_second": 58.409,
8
+ "train_steps_per_second": 0.304
9
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.994535519125683,
3
+ "total_flos": 3.8200965830436454e+17,
4
+ "train_loss": 1.8459819070585481,
5
+ "train_runtime": 299.5258,
6
+ "train_samples": 92634,
7
+ "train_samples_per_second": 58.409,
8
+ "train_steps_per_second": 0.304
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.994535519125683,
5
+ "eval_steps": 500,
6
+ "global_step": 91,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01092896174863388,
13
+ "grad_norm": 9.203123092651367,
14
+ "learning_rate": 2e-05,
15
+ "loss": 2.582,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0546448087431694,
20
+ "grad_norm": 5.399723052978516,
21
+ "learning_rate": 0.0001,
22
+ "loss": 2.511,
23
+ "step": 5
24
+ },
25
+ {
26
+ "epoch": 0.1092896174863388,
27
+ "grad_norm": 2.4733173847198486,
28
+ "learning_rate": 0.0002,
29
+ "loss": 2.3222,
30
+ "step": 10
31
+ },
32
+ {
33
+ "epoch": 0.16393442622950818,
34
+ "grad_norm": 2.0453178882598877,
35
+ "learning_rate": 0.00019812553106273847,
36
+ "loss": 2.1174,
37
+ "step": 15
38
+ },
39
+ {
40
+ "epoch": 0.2185792349726776,
41
+ "grad_norm": 1.9896700382232666,
42
+ "learning_rate": 0.00019257239692688907,
43
+ "loss": 1.9656,
44
+ "step": 20
45
+ },
46
+ {
47
+ "epoch": 0.273224043715847,
48
+ "grad_norm": 0.9077722430229187,
49
+ "learning_rate": 0.00018354878114129367,
50
+ "loss": 1.8583,
51
+ "step": 25
52
+ },
53
+ {
54
+ "epoch": 0.32786885245901637,
55
+ "grad_norm": 0.7602087259292603,
56
+ "learning_rate": 0.00017139297345578994,
57
+ "loss": 1.7976,
58
+ "step": 30
59
+ },
60
+ {
61
+ "epoch": 0.3825136612021858,
62
+ "grad_norm": 0.8192912340164185,
63
+ "learning_rate": 0.00015656068754865387,
64
+ "loss": 1.7772,
65
+ "step": 35
66
+ },
67
+ {
68
+ "epoch": 0.4371584699453552,
69
+ "grad_norm": 0.6041179895401001,
70
+ "learning_rate": 0.0001396079766039157,
71
+ "loss": 1.7488,
72
+ "step": 40
73
+ },
74
+ {
75
+ "epoch": 0.4918032786885246,
76
+ "grad_norm": 0.5910283327102661,
77
+ "learning_rate": 0.0001211703872229411,
78
+ "loss": 1.7323,
79
+ "step": 45
80
+ },
81
+ {
82
+ "epoch": 0.546448087431694,
83
+ "grad_norm": 0.6845403909683228,
84
+ "learning_rate": 0.00010193913317718244,
85
+ "loss": 1.7316,
86
+ "step": 50
87
+ },
88
+ {
89
+ "epoch": 0.6010928961748634,
90
+ "grad_norm": 0.6234318614006042,
91
+ "learning_rate": 8.263518223330697e-05,
92
+ "loss": 1.7174,
93
+ "step": 55
94
+ },
95
+ {
96
+ "epoch": 0.6557377049180327,
97
+ "grad_norm": 0.5730881094932556,
98
+ "learning_rate": 6.398222751952899e-05,
99
+ "loss": 1.7068,
100
+ "step": 60
101
+ },
102
+ {
103
+ "epoch": 0.7103825136612022,
104
+ "grad_norm": 0.5278472304344177,
105
+ "learning_rate": 4.66795567198309e-05,
106
+ "loss": 1.7131,
107
+ "step": 65
108
+ },
109
+ {
110
+ "epoch": 0.7650273224043715,
111
+ "grad_norm": 0.519974946975708,
112
+ "learning_rate": 3.137583621312665e-05,
113
+ "loss": 1.71,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 0.819672131147541,
118
+ "grad_norm": 0.5470304489135742,
119
+ "learning_rate": 1.864479297370325e-05,
120
+ "loss": 1.7065,
121
+ "step": 75
122
+ },
123
+ {
124
+ "epoch": 0.8743169398907104,
125
+ "grad_norm": 0.5100380182266235,
126
+ "learning_rate": 8.963705903385345e-06,
127
+ "loss": 1.7043,
128
+ "step": 80
129
+ },
130
+ {
131
+ "epoch": 0.9289617486338798,
132
+ "grad_norm": 0.45625337958335876,
133
+ "learning_rate": 2.6955129420176196e-06,
134
+ "loss": 1.6982,
135
+ "step": 85
136
+ },
137
+ {
138
+ "epoch": 0.9836065573770492,
139
+ "grad_norm": 0.5059428215026855,
140
+ "learning_rate": 7.520474957699586e-08,
141
+ "loss": 1.7055,
142
+ "step": 90
143
+ },
144
+ {
145
+ "epoch": 0.994535519125683,
146
+ "eval_loss": 1.9624824523925781,
147
+ "eval_runtime": 0.5691,
148
+ "eval_samples_per_second": 7.028,
149
+ "eval_steps_per_second": 1.757,
150
+ "step": 91
151
+ },
152
+ {
153
+ "epoch": 0.994535519125683,
154
+ "step": 91,
155
+ "total_flos": 3.8200965830436454e+17,
156
+ "train_loss": 1.8459819070585481,
157
+ "train_runtime": 299.5258,
158
+ "train_samples_per_second": 58.409,
159
+ "train_steps_per_second": 0.304
160
+ }
161
+ ],
162
+ "logging_steps": 5,
163
+ "max_steps": 91,
164
+ "num_input_tokens_seen": 0,
165
+ "num_train_epochs": 1,
166
+ "save_steps": 100,
167
+ "stateful_callbacks": {
168
+ "TrainerControl": {
169
+ "args": {
170
+ "should_epoch_stop": false,
171
+ "should_evaluate": false,
172
+ "should_log": false,
173
+ "should_save": true,
174
+ "should_training_stop": true
175
+ },
176
+ "attributes": {}
177
+ }
178
+ },
179
+ "total_flos": 3.8200965830436454e+17,
180
+ "train_batch_size": 12,
181
+ "trial_name": null,
182
+ "trial_params": null
183
+ }