--- base_model: finiteautomata/bertweet-base-sentiment-analysis tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: finetuning-sentiment-model-1000-samples-synth results: [] --- # finetuning-sentiment-model-1000-samples-synth This model is a fine-tuned version of [finiteautomata/bertweet-base-sentiment-analysis](https://huggingface.co/finiteautomata/bertweet-base-sentiment-analysis) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1326 - Accuracy: 0.9825 - F1: 0.9826 - Recall: 0.9705 - Precision: 0.9950 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 1.13.1+cpu - Datasets 2.18.0 - Tokenizers 0.15.2