kmagai commited on
Commit
af8e69a
·
verified ·
1 Parent(s): b1faeae

Update README

Browse files
Files changed (1) hide show
  1. README.md +123 -2
README.md CHANGED
@@ -11,12 +11,133 @@ language:
11
  - en
12
  ---
13
 
14
- # Uploaded model
15
 
16
  - **Developed by:** kmagai
17
  - **License:** apache-2.0
18
- - **Finetuned from model :** llm-jp/llm-jp-3-13b
19
 
20
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  - en
12
  ---
13
 
14
+ # Uploaded model
15
 
16
  - **Developed by:** kmagai
17
  - **License:** apache-2.0
18
+ - **Finetuned from model:** llm-jp/llm-jp-3-13b
19
 
20
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
23
+
24
+ ## JSONL Output Process
25
+
26
+ ### Model Inference Setup
27
+
28
+ ```python
29
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
30
+ import torch
31
+ from tqdm import tqdm
32
+ import json
33
+
34
+ # QLoRA config for 4-bit quantization
35
+ bnb_config = BitsAndBytesConfig(
36
+ load_in_4bit=True,
37
+ bnb_4bit_quant_type="nf4",
38
+ bnb_4bit_compute_dtype=torch.bfloat16,
39
+ bnb_4bit_use_double_quant=False,
40
+ )
41
+
42
+ # Load model and tokenizer
43
+ model = AutoModelForCausalLM.from_pretrained(
44
+ model_name,
45
+ quantization_config=bnb_config,
46
+ device_map="auto",
47
+ token=HF_TOKEN
48
+ )
49
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token=HF_TOKEN)
50
+ ```
51
+
52
+ ### Input Data Processing
53
+
54
+ The script reads input data from a JSONL file (`elyza-tasks-100-TV_0.jsonl`). Each line contains a JSON object with task information:
55
+
56
+ ```python
57
+ datasets = []
58
+ with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
59
+ item = ""
60
+ for line in f:
61
+ line = line.strip()
62
+ item += line
63
+ if item.endswith("}"):
64
+ datasets.append(json.loads(item))
65
+ item = ""
66
+ ```
67
+
68
+ ### Generation Process
69
+
70
+ For each input in the dataset:
71
+
72
+ 1. Format the prompt with instruction template
73
+ 2. Tokenize the input
74
+ 3. Generate response using the model
75
+ 4. Decode the output
76
+ 5. Create result object with task_id and output
77
+
78
+ ```python
79
+ results = []
80
+ for data in tqdm(datasets):
81
+ input = data["input"]
82
+ prompt = f"""### Instruction
83
+ {input}
84
+ ### Response:
85
+ """
86
+
87
+ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
88
+ with torch.no_grad():
89
+ outputs = model.generate(
90
+ tokenized_input,
91
+ max_new_tokens=100,
92
+ do_sample=False,
93
+ repetition_penalty=1.2
94
+ )[0]
95
+ output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
96
+
97
+ results.append({"task_id": data["task_id"], "input": input, "output": output})
98
+ ```
99
+
100
+ ### Generation Parameters
101
+
102
+ - `max_new_tokens=100`: Maximum number of tokens to generate
103
+ - `do_sample=False`: Deterministic generation (same output every time)
104
+ - `repetition_penalty=1.2`: Penalize repetition in generated text
105
+
106
+ ### Output Format
107
+
108
+ The generated responses are saved in a JSONL file with the following format:
109
+
110
+ ```json
111
+ {"task_id": "task_1", "input": "input text", "output": "generated response"}
112
+ ```
113
+
114
+ Required fields:
115
+ - `task_id`: Unique identifier for the task
116
+ - `output`: Response generated by the model
117
+
118
+ Optional fields:
119
+ - `input`: Input text (can be omitted in submission)
120
+
121
+ ## Training Data Format
122
+
123
+ The training data should be provided in JSONL (JSON Lines) format, where each line represents a single JSON object containing the following fields:
124
+
125
+ ```json
126
+ {
127
+ "instruction": "Task instruction text",
128
+ "input": "Input text (optional)",
129
+ "output": "Expected output text"
130
+ }
131
+ ```
132
+
133
+ ### Fields Description
134
+
135
+ - `instruction`: Task instruction that tells the model what to do
136
+ - `input`: (Optional) Input text that provides specific context for the instruction
137
+ - `output`: Expected output that represents the ideal response
138
+
139
+ ### Example
140
+
141
+ ```json
142
+ {"instruction": "以下の文章を要約してください。", "input": "人工知能(AI)は、人間の知能を模倣し、学習、推論、判断などを行うコンピュータシステムです。近年、機械学習や深層学習の発展により、画像認識、自然言語処理、ゲームなど様々な分野で人間に匹敵する、あるいは人間を超える性能を示しています。", "output": "AIは人間の知能を模倣するコンピュータシステムで、機械学習の発展により多くの分野で高い性能を示している。"}
143
+ {"instruction": "次の英文を日本語に翻訳してください。", "input": "Artificial Intelligence is transforming the way we live and work.", "output": "人工知能は私たちの生活と仕事の仕方を変革しています。"}