Token Classification
GLiNER
PyTorch
multilingual
NER
GLiNER
information extraction
encoder
entity recognition
Ihor commited on
Commit
a837fbb
1 Parent(s): dc31849

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -42
README.md CHANGED
@@ -78,51 +78,40 @@ model = GLiNER.from_pretrained("knowledgator/gliner-qwen-1.5B-v1.0",
78
  max_len = 2048).to('cuda:0')
79
  ```
80
 
81
- If you have a large amount of entities and want to pre-embed them, please, refer to the following code snippet:
82
-
83
- ```python
84
- labels = ["your entities"]
85
- texts = ["your texts"]
86
-
87
- entity_embeddings = model.encode_labels(labels, batch_size = 8)
88
-
89
- outputs = model.batch_predict_with_embeds(texts, entity_embeddings, labels)
90
- ```
91
-
92
  ### Benchmarks
93
  Below you can see the table with benchmarking results on various named entity recognition datasets:
94
 
95
- | Dataset | Score |
96
- |-------------------------|--------|
97
- | ACE 2004 | 26.8% |
98
- | ACE 2005 | 29.2% |
99
- | AnatEM | 25.3% |
100
- | Broad Tweet Corpus | 66.8% |
101
- | CoNLL 2003 | 60.3% |
102
- | FabNER | 21.2% |
103
- | FindVehicle | 28.3% |
104
- | GENIA_NER | 58.3% |
105
- | HarveyNER | 18.3% |
106
- | MultiNERD | 64.7% |
107
- | Ontonotes | 28.4% |
108
- | PolyglotNER | 45.3% |
109
- | TweetNER7 | 35.9% |
110
- | WikiANN en | 53.6% |
111
- | WikiNeural | 73.4% |
112
- | bc2gm | 63.2% |
113
- | bc4chemd | 56.8% |
114
- | bc5cdr | 71.3% |
115
- | ncbi | 64.9% |
116
- | **Average** | **47.0%** |
117
- | | |
118
- | CrossNER_AI | 56.7% |
119
- | CrossNER_literature | 61.5% |
120
- | CrossNER_music | 70.2% |
121
- | CrossNER_politics | 75.6% |
122
- | CrossNER_science | 66.8% |
123
- | mit-movie | 39.9% |
124
- | mit-restaurant | 41.7% |
125
- | **Average (zero-shot benchmark)** | **58.9%** |
126
 
127
  ### Join Our Discord
128
 
 
78
  max_len = 2048).to('cuda:0')
79
  ```
80
 
 
 
 
 
 
 
 
 
 
 
 
81
  ### Benchmarks
82
  Below you can see the table with benchmarking results on various named entity recognition datasets:
83
 
84
+ | Dataset | Score |
85
+ |-----------------------------|--------|
86
+ | ACE 2004 | 29.8% |
87
+ | ACE 2005 | 26.8% |
88
+ | AnatEM | 43.7% |
89
+ | Broad Tweet Corpus | 68.3% |
90
+ | CoNLL 2003 | 67.5% |
91
+ | FabNER | 24.9% |
92
+ | FindVehicle | 33.2% |
93
+ | GENIA_NER | 58.8% |
94
+ | HarveyNER | 19.5% |
95
+ | MultiNERD | 65.1% |
96
+ | Ontonotes | 39.9% |
97
+ | PolyglotNER | 45.8% |
98
+ | TweetNER7 | 37.0% |
99
+ | WikiANN en | 56.0% |
100
+ | WikiNeural | 78.3% |
101
+ | bc2gm | 58.1% |
102
+ | bc4chemd | 65.7% |
103
+ | bc5cdr | 72.3% |
104
+ | ncbi | 63.3% |
105
+ | **Average** | **50.2%** |
106
+ | | |
107
+ | CrossNER_AI | 58.3% |
108
+ | CrossNER_literature | 64.4% |
109
+ | CrossNER_music | 71.5% |
110
+ | CrossNER_politics | 70.5% |
111
+ | CrossNER_science | 65.1% |
112
+ | mit-movie | 47.5% |
113
+ | mit-restaurant | 33.1% |
114
+ | **Average (zero-shot benchmark)** | **58.6%** |
115
 
116
  ### Join Our Discord
117