Update README.md
Browse files
README.md
CHANGED
@@ -19,10 +19,13 @@ This is an encoder-decoder model that was trained on various information extract
|
|
19 |
First of all, initialize the model:
|
20 |
```python
|
21 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
|
|
|
|
|
|
22 |
|
23 |
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
|
24 |
|
25 |
-
model = T5ForConditionalGeneration.from_pretrained("knowledgator/t5-for-ie")
|
26 |
```
|
27 |
|
28 |
You need to set a prompt and put it with text to the model, below are examples of how to use it for different tasks:
|
@@ -30,7 +33,7 @@ You need to set a prompt and put it with text to the model, below are examples o
|
|
30 |
**named entity recognition**
|
31 |
```python
|
32 |
input_text = "Extract entity types from the text: <e1>Kyiv</e1> is the capital of <e2>Ukraine</e2>."
|
33 |
-
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
34 |
|
35 |
outputs = model.generate(input_ids)
|
36 |
print(tokenizer.decode(outputs[0]))
|
@@ -39,7 +42,7 @@ print(tokenizer.decode(outputs[0]))
|
|
39 |
**text classification**
|
40 |
```python
|
41 |
input_text = "Classify the following text into the most relevant categories: Kyiv is the capital of Ukraine"
|
42 |
-
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
43 |
|
44 |
outputs = model.generate(input_ids)
|
45 |
print(tokenizer.decode(outputs[0]))
|
@@ -48,7 +51,7 @@ print(tokenizer.decode(outputs[0]))
|
|
48 |
**relation extraction**
|
49 |
```python
|
50 |
input_text = "Extract relations between entities in the text: <e1>Kyiv</e1> is the capital of <e2>Ukraine</e2>."
|
51 |
-
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
52 |
|
53 |
outputs = model.generate(input_ids)
|
54 |
print(tokenizer.decode(outputs[0]))
|
@@ -78,7 +81,7 @@ classifier = TextClassifier(
|
|
78 |
labels=['default'],
|
79 |
model=model,
|
80 |
tokenizer=tokenizer,
|
81 |
-
device=
|
82 |
)
|
83 |
classifier.initialize_labels_trie(labels)
|
84 |
|
|
|
19 |
First of all, initialize the model:
|
20 |
```python
|
21 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
22 |
+
import torch
|
23 |
+
|
24 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device('cpu')
|
25 |
|
26 |
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
|
27 |
|
28 |
+
model = T5ForConditionalGeneration.from_pretrained("knowledgator/t5-for-ie").to(device)
|
29 |
```
|
30 |
|
31 |
You need to set a prompt and put it with text to the model, below are examples of how to use it for different tasks:
|
|
|
33 |
**named entity recognition**
|
34 |
```python
|
35 |
input_text = "Extract entity types from the text: <e1>Kyiv</e1> is the capital of <e2>Ukraine</e2>."
|
36 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
|
37 |
|
38 |
outputs = model.generate(input_ids)
|
39 |
print(tokenizer.decode(outputs[0]))
|
|
|
42 |
**text classification**
|
43 |
```python
|
44 |
input_text = "Classify the following text into the most relevant categories: Kyiv is the capital of Ukraine"
|
45 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
|
46 |
|
47 |
outputs = model.generate(input_ids)
|
48 |
print(tokenizer.decode(outputs[0]))
|
|
|
51 |
**relation extraction**
|
52 |
```python
|
53 |
input_text = "Extract relations between entities in the text: <e1>Kyiv</e1> is the capital of <e2>Ukraine</e2>."
|
54 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
|
55 |
|
56 |
outputs = model.generate(input_ids)
|
57 |
print(tokenizer.decode(outputs[0]))
|
|
|
81 |
labels=['default'],
|
82 |
model=model,
|
83 |
tokenizer=tokenizer,
|
84 |
+
device=device #if cuda
|
85 |
)
|
86 |
classifier.initialize_labels_trie(labels)
|
87 |
|