--- license: mit tags: - moe - DPO - RL-TUNED --- # Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B ## Description This repo contains GGUF format model files for Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B. ## Files Provided | Name | Quant | Bits | File Size | Remark | | ------------------------------------------------------- | ------- | ---- | --------- | -------------------------------- | | truthful_dpo_tomgrc_fusionnet_7bx2_moe_13b.IQ3_XXS.gguf | IQ3_XXS | 3 | 5.30 GB | 3.06 bpw quantization | | truthful_dpo_tomgrc_fusionnet_7bx2_moe_13b.IQ3_S.gguf | IQ3_S | 3 | 5.60 GB | 3.44 bpw quantization | | truthful_dpo_tomgrc_fusionnet_7bx2_moe_13b.IQ3_M.gguf | IQ3_M | 3 | 5.74 GB | 3.66 bpw quantization mix | | truthful_dpo_tomgrc_fusionnet_7bx2_moe_13b.Q4_0.gguf | Q4_0 | 4 | 7.28 GB | 3.56G, +0.2166 ppl | | truthful_dpo_tomgrc_fusionnet_7bx2_moe_13b.IQ4_NL.gguf | IQ4_NL | 4 | 7.36 GB | 4.25 bpw non-linear quantization | | truthful_dpo_tomgrc_fusionnet_7bx2_moe_13b.Q4_K_M.gguf | Q4_K_M | 4 | 7.78 GB | 3.80G, +0.0532 ppl | | truthful_dpo_tomgrc_fusionnet_7bx2_moe_13b.Q5_K_M.gguf | Q5_K_M | 5 | 9.13 GB | 4.45G, +0.0122 ppl | | truthful_dpo_tomgrc_fusionnet_7bx2_moe_13b.Q6_K.gguf | Q6_K | 6 | 10.57 GB | 5.15G, +0.0008 ppl | | truthful_dpo_tomgrc_fusionnet_7bx2_moe_13b.Q8_0.gguf | Q8_0 | 8 | 13.69 GB | 6.70G, +0.0004 ppl | ## Parameters | path | type | architecture | rope_theta | sliding_win | max_pos_embed | | ------------------------------------------------------ | ------- | ------------------ | ---------- | ----------- | ------------- | | yunconglong/Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B | mixtral | MixtralForCausalLM | 10000.0 | null | 32768 | ## Benchmarks ![](https://i.ibb.co/QNW0WJr/Truthful-DPO-Tom-Grc-Fusion-Net-7-Bx2-Mo-E-13-B.png) # Original Model Card * [DPO Trainer](https://huggingface.co/docs/trl/main/en/dpo_trainer) with dataset jondurbin/truthy-dpo-v0.1 to improve [TomGrc/FusionNet_7Bx2_MoE_14B] ``` DPO Trainer TRL supports the DPO Trainer for training language models from preference data, as described in the paper Direct Preference Optimization: Your Language Model is Secretly a Reward Model by Rafailov et al., 2023. ```