--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** koi777 - **License:** apache-2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) ## Usage Execute following code on Google Colab ```python !pip uninstall unsloth -y !pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" !pip install --upgrade torch !pip install --upgrade xformers # import necessary libraries from unsloth import FastLanguageModel from peft import PeftModel import torch import json from tqdm import tqdm # mount your Google Drive from google.colab import drive drive.mount('/content/drive') %cd /content/drive/MyDrive/directory_name # install Flash Attention 2 for softcapping support import torch if torch.cuda.get_device_capability()[0] >= 8: !pip install --no-deps packaging ninja einops "flash-attn>=2.6.3" # get Hugging Face token # register your Hugging Face token to the secrets in advance from google.colab import userdata HF_TOKEN=userdata.get('HF_TOKEN') # merge adapter with base model model_id = "llm-jp/llm-jp-3-13b" adapter_id = "koi777/llm-jp-3-13b_20241216_3" dtype = torch.bfloat16 load_in_4bit = True # set True in order to hundle 13B model model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_id, dtype=dtype, load_in_4bit=load_in_4bit, trust_remote_code=True, ) model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN) # load test dataset dataset_TV = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): dataset_TV.append(json.loads(item)) item = "" # start inference from tqdm import tqdm # change to inference mode FastLanguageModel.for_inference(model) results = [] for dt in tqdm(dataset_TV): input = dt["input"] prompt = f"""### 問題\n{input}\n### 回答\n""" inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) # save model output as jsonl file with open("./output_jsonl/output.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n') ``` ## Datasets ### Instruction tuning The model was fine-tuned on the following dataset. | Language | Dataset | description | |:---|:---|:---| |Japanese| Synthetic dataset based on elyza-tasks-100| Dataset synthesized by ChatGPT o1 pro mode and hand based on [elyza-tasks-100](https://huggingface.co/datasets/elyza/ELYZA-tasks-100) (CC-BY-SA-4.0)|