koichi-sumizaki commited on
Commit
b67c8ed
·
verified ·
1 Parent(s): eb6ddbf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -195
README.md CHANGED
@@ -1,39 +1,25 @@
1
  ---
2
- library_name: transformers
3
  tags:
 
 
4
  - unsloth
 
 
 
 
 
5
  ---
6
 
7
- # Model Card for Model ID
8
 
9
- <!-- Provide a quick summary of what the model is/does. -->
 
 
10
 
 
11
 
12
-
13
- ## Model Details
14
-
15
- ### Model Description
16
-
17
- <!-- Provide a longer summary of what this model is. -->
18
-
19
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
20
-
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
- - **Language(s) (NLP):** [More Information Needed]
26
- - **License:** [More Information Needed]
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
-
29
- ### Model Sources [optional]
30
-
31
- <!-- Provide the basic links for the model. -->
32
-
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
36
-
37
  ## Usage
38
 
39
  ```python
@@ -60,7 +46,7 @@ HF_TOKEN = "YOUR-HF-TOKEN"
60
 
61
  ```python
62
  base_model_id = "llm-jp/llm-jp-3-13b"
63
- adapter_id = "koichi-sumizaki/llm-jp-3-13b-it2024-12-14_lora"
64
  ```
65
 
66
  ```python
@@ -134,169 +120,4 @@ with open(f"./{model_name}-outputs.jsonl", 'w', encoding='utf-8') as f:
134
  for result in results:
135
  json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
136
  f.write('\n')
137
- ```
138
-
139
- ## Uses
140
-
141
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
142
-
143
- ### Direct Use
144
-
145
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
146
-
147
- [More Information Needed]
148
-
149
- ### Downstream Use [optional]
150
-
151
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
152
-
153
- [More Information Needed]
154
-
155
- ### Out-of-Scope Use
156
-
157
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
158
-
159
- [More Information Needed]
160
-
161
- ## Bias, Risks, and Limitations
162
-
163
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
164
-
165
- [More Information Needed]
166
-
167
- ### Recommendations
168
-
169
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
170
-
171
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
172
-
173
- ## How to Get Started with the Model
174
-
175
- Use the code below to get started with the model.
176
-
177
- [More Information Needed]
178
-
179
- ## Training Details
180
-
181
- ### Training Data
182
-
183
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
184
-
185
- [More Information Needed]
186
-
187
- ### Training Procedure
188
-
189
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
190
-
191
- #### Preprocessing [optional]
192
-
193
- [More Information Needed]
194
-
195
-
196
- #### Training Hyperparameters
197
-
198
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
199
-
200
- #### Speeds, Sizes, Times [optional]
201
-
202
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
203
-
204
- [More Information Needed]
205
-
206
- ## Evaluation
207
-
208
- <!-- This section describes the evaluation protocols and provides the results. -->
209
-
210
- ### Testing Data, Factors & Metrics
211
-
212
- #### Testing Data
213
-
214
- <!-- This should link to a Dataset Card if possible. -->
215
-
216
- [More Information Needed]
217
-
218
- #### Factors
219
-
220
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
221
-
222
- [More Information Needed]
223
-
224
- #### Metrics
225
-
226
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
227
-
228
- [More Information Needed]
229
-
230
- ### Results
231
-
232
- [More Information Needed]
233
-
234
- #### Summary
235
-
236
-
237
-
238
- ## Model Examination [optional]
239
-
240
- <!-- Relevant interpretability work for the model goes here -->
241
-
242
- [More Information Needed]
243
-
244
- ## Environmental Impact
245
-
246
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
247
-
248
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
249
-
250
- - **Hardware Type:** [More Information Needed]
251
- - **Hours used:** [More Information Needed]
252
- - **Cloud Provider:** [More Information Needed]
253
- - **Compute Region:** [More Information Needed]
254
- - **Carbon Emitted:** [More Information Needed]
255
-
256
- ## Technical Specifications [optional]
257
-
258
- ### Model Architecture and Objective
259
-
260
- [More Information Needed]
261
-
262
- ### Compute Infrastructure
263
-
264
- [More Information Needed]
265
-
266
- #### Hardware
267
-
268
- [More Information Needed]
269
-
270
- #### Software
271
-
272
- [More Information Needed]
273
-
274
- ## Citation [optional]
275
-
276
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
277
-
278
- **BibTeX:**
279
-
280
- [More Information Needed]
281
-
282
- **APA:**
283
-
284
- [More Information Needed]
285
-
286
- ## Glossary [optional]
287
-
288
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
289
-
290
- [More Information Needed]
291
-
292
- ## More Information [optional]
293
-
294
- [More Information Needed]
295
-
296
- ## Model Card Authors [optional]
297
-
298
- [More Information Needed]
299
-
300
- ## Model Card Contact
301
-
302
- [More Information Needed]
 
1
  ---
2
+ base_model: llm-jp/llm-jp-3-13b
3
  tags:
4
+ - text-generation-inference
5
+ - transformers
6
  - unsloth
7
+ - llama
8
+ - trl
9
+ license: apache-2.0
10
+ language:
11
+ - en
12
  ---
13
 
14
+ # Uploaded model
15
 
16
+ - **Developed by:** koichi-sumizaki
17
+ - **License:** apache-2.0
18
+ - **Finetuned from model :** llm-jp/llm-jp-3-13b
19
 
20
+ This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  ## Usage
24
 
25
  ```python
 
46
 
47
  ```python
48
  base_model_id = "llm-jp/llm-jp-3-13b"
49
+ adapter_id = "koichi-sumizaki/llm-jp-3-13b-it2024-12-1741_lora"
50
  ```
51
 
52
  ```python
 
120
  for result in results:
121
  json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
122
  f.write('\n')
123
+ ```