--- license: creativeml-openrail-m base_model: lambdalabs/miniSD-diffusers datasets: - kopyl/833-icons-dataset-1024-blip-large tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- # Text-to-image finetuning - kopyl/nano-sd-tuned-sample This pipeline was finetuned from **lambdalabs/miniSD-diffusers** on the **kopyl/833-icons-dataset-1024-blip-large** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['photo of a frog']: ![val_imgs_grid](./val_imgs_grid.png) ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained("kopyl/nano-sd-tuned-sample", torch_dtype=torch.float16) prompt = "photo of a frog" image = pipeline(prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 1 * Learning rate: 1e-05 * Batch size: 1 * Gradient accumulation steps: 1 * Image resolution: 256 * Mixed-precision: fp16 More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/spammmmm1997/text2image-fine-tune/runs/hs9vbf2e).