File size: 14,478 Bytes
096c926 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
# This file is part of h5py, a Python interface to the HDF5 library.
#
# http://www.h5py.org
#
# Copyright 2008-2013 Andrew Collette and contributors
#
# License: Standard 3-clause BSD; see "license.txt" for full license terms
# and contributor agreement.
"""
High-level access to HDF5 dataspace selections
"""
import numpy as np
from .base import product
from .. import h5s, h5r, _selector
def select(shape, args, dataset=None):
""" High-level routine to generate a selection from arbitrary arguments
to __getitem__. The arguments should be the following:
shape
Shape of the "source" dataspace.
args
Either a single argument or a tuple of arguments. See below for
supported classes of argument.
dataset
A h5py.Dataset instance representing the source dataset.
Argument classes:
Single Selection instance
Returns the argument.
numpy.ndarray
Must be a boolean mask. Returns a PointSelection instance.
RegionReference
Returns a Selection instance.
Indices, slices, ellipses, MultiBlockSlices only
Returns a SimpleSelection instance
Indices, slices, ellipses, lists or boolean index arrays
Returns a FancySelection instance.
"""
if not isinstance(args, tuple):
args = (args,)
# "Special" indexing objects
if len(args) == 1:
arg = args[0]
if isinstance(arg, Selection):
if arg.shape != shape:
raise TypeError("Mismatched selection shape")
return arg
elif isinstance(arg, np.ndarray) and arg.dtype.kind == 'b':
if arg.shape != shape:
raise TypeError("Boolean indexing array has incompatible shape")
return PointSelection.from_mask(arg)
elif isinstance(arg, h5r.RegionReference):
if dataset is None:
raise TypeError("Cannot apply a region reference without a dataset")
sid = h5r.get_region(arg, dataset.id)
if shape != sid.shape:
raise TypeError("Reference shape does not match dataset shape")
return Selection(shape, spaceid=sid)
if dataset is not None:
selector = dataset._selector
else:
space = h5s.create_simple(shape)
selector = _selector.Selector(space)
return selector.make_selection(args)
class Selection:
"""
Base class for HDF5 dataspace selections. Subclasses support the
"selection protocol", which means they have at least the following
members:
__init__(shape) => Create a new selection on "shape"-tuple
__getitem__(args) => Perform a selection with the range specified.
What args are allowed depends on the
particular subclass in use.
id (read-only) => h5py.h5s.SpaceID instance
shape (read-only) => The shape of the dataspace.
mshape (read-only) => The shape of the selection region.
Not guaranteed to fit within "shape", although
the total number of points is less than
product(shape).
nselect (read-only) => Number of selected points. Always equal to
product(mshape).
broadcast(target_shape) => Return an iterable which yields dataspaces
for read, based on target_shape.
The base class represents "unshaped" selections (1-D).
"""
def __init__(self, shape, spaceid=None):
""" Create a selection. Shape may be None if spaceid is given. """
if spaceid is not None:
self._id = spaceid
self._shape = spaceid.shape
else:
shape = tuple(shape)
self._shape = shape
self._id = h5s.create_simple(shape, (h5s.UNLIMITED,)*len(shape))
self._id.select_all()
@property
def id(self):
""" SpaceID instance """
return self._id
@property
def shape(self):
""" Shape of whole dataspace """
return self._shape
@property
def nselect(self):
""" Number of elements currently selected """
return self._id.get_select_npoints()
@property
def mshape(self):
""" Shape of selection (always 1-D for this class) """
return (self.nselect,)
@property
def array_shape(self):
"""Shape of array to read/write (always 1-D for this class)"""
return self.mshape
# expand_shape and broadcast only really make sense for SimpleSelection
def expand_shape(self, source_shape):
if product(source_shape) != self.nselect:
raise TypeError("Broadcasting is not supported for point-wise selections")
return source_shape
def broadcast(self, source_shape):
""" Get an iterable for broadcasting """
if product(source_shape) != self.nselect:
raise TypeError("Broadcasting is not supported for point-wise selections")
yield self._id
def __getitem__(self, args):
raise NotImplementedError("This class does not support indexing")
class PointSelection(Selection):
"""
Represents a point-wise selection. You can supply sequences of
points to the three methods append(), prepend() and set(), or
instantiate it with a single boolean array using from_mask().
"""
def __init__(self, shape, spaceid=None, points=None):
super().__init__(shape, spaceid)
if points is not None:
self._perform_selection(points, h5s.SELECT_SET)
def _perform_selection(self, points, op):
""" Internal method which actually performs the selection """
points = np.asarray(points, order='C', dtype='u8')
if len(points.shape) == 1:
points.shape = (1,points.shape[0])
if self._id.get_select_type() != h5s.SEL_POINTS:
op = h5s.SELECT_SET
if len(points) == 0:
self._id.select_none()
else:
self._id.select_elements(points, op)
@classmethod
def from_mask(cls, mask, spaceid=None):
"""Create a point-wise selection from a NumPy boolean array """
if not (isinstance(mask, np.ndarray) and mask.dtype.kind == 'b'):
raise TypeError("PointSelection.from_mask only works with bool arrays")
points = np.transpose(mask.nonzero())
return cls(mask.shape, spaceid, points=points)
def append(self, points):
""" Add the sequence of points to the end of the current selection """
self._perform_selection(points, h5s.SELECT_APPEND)
def prepend(self, points):
""" Add the sequence of points to the beginning of the current selection """
self._perform_selection(points, h5s.SELECT_PREPEND)
def set(self, points):
""" Replace the current selection with the given sequence of points"""
self._perform_selection(points, h5s.SELECT_SET)
class SimpleSelection(Selection):
""" A single "rectangular" (regular) selection composed of only slices
and integer arguments. Can participate in broadcasting.
"""
@property
def mshape(self):
""" Shape of current selection """
return self._sel[1]
@property
def array_shape(self):
scalar = self._sel[3]
return tuple(x for x, s in zip(self.mshape, scalar) if not s)
def __init__(self, shape, spaceid=None, hyperslab=None):
super().__init__(shape, spaceid)
if hyperslab is not None:
self._sel = hyperslab
else:
# No hyperslab specified - select all
rank = len(self.shape)
self._sel = ((0,)*rank, self.shape, (1,)*rank, (False,)*rank)
def expand_shape(self, source_shape):
"""Match the dimensions of an array to be broadcast to the selection
The returned shape describes an array of the same size as the input
shape, but its dimensions
E.g. with a dataset shape (10, 5, 4, 2), writing like this::
ds[..., 0] = np.ones((5, 4))
The source shape (5, 4) will expand to (1, 5, 4, 1).
Then the broadcast method below repeats that chunk 10
times to write to an effective shape of (10, 5, 4, 1).
"""
start, count, step, scalar = self._sel
rank = len(count)
remaining_src_dims = list(source_shape)
eshape = []
for idx in range(1, rank + 1):
if len(remaining_src_dims) == 0 or scalar[-idx]: # Skip scalar axes
eshape.append(1)
else:
t = remaining_src_dims.pop()
if t == 1 or count[-idx] == t:
eshape.append(t)
else:
raise TypeError("Can't broadcast %s -> %s" % (source_shape, self.array_shape)) # array shape
if any([n > 1 for n in remaining_src_dims]):
# All dimensions from target_shape should either have been popped
# to match the selection shape, or be 1.
raise TypeError("Can't broadcast %s -> %s" % (source_shape, self.array_shape)) # array shape
# We have built eshape backwards, so now reverse it
return tuple(eshape[::-1])
def broadcast(self, source_shape):
""" Return an iterator over target dataspaces for broadcasting.
Follows the standard NumPy broadcasting rules against the current
selection shape (self.mshape).
"""
if self.shape == ():
if product(source_shape) != 1:
raise TypeError("Can't broadcast %s to scalar" % source_shape)
self._id.select_all()
yield self._id
return
start, count, step, scalar = self._sel
rank = len(count)
tshape = self.expand_shape(source_shape)
chunks = tuple(x//y for x, y in zip(count, tshape))
nchunks = product(chunks)
if nchunks == 1:
yield self._id
else:
sid = self._id.copy()
sid.select_hyperslab((0,)*rank, tshape, step)
for idx in range(nchunks):
offset = tuple(x*y*z + s for x, y, z, s in zip(np.unravel_index(idx, chunks), tshape, step, start))
sid.offset_simple(offset)
yield sid
class FancySelection(Selection):
"""
Implements advanced NumPy-style selection operations in addition to
the standard slice-and-int behavior.
Indexing arguments may be ints, slices, lists of indices, or
per-axis (1D) boolean arrays.
Broadcasting is not supported for these selections.
"""
@property
def mshape(self):
return self._mshape
@property
def array_shape(self):
return self._array_shape
def __init__(self, shape, spaceid=None, mshape=None, array_shape=None):
super().__init__(shape, spaceid)
if mshape is None:
mshape = self.shape
if array_shape is None:
array_shape = mshape
self._mshape = mshape
self._array_shape = array_shape
def expand_shape(self, source_shape):
if not source_shape == self.array_shape:
raise TypeError("Broadcasting is not supported for complex selections")
return source_shape
def broadcast(self, source_shape):
if not source_shape == self.array_shape:
raise TypeError("Broadcasting is not supported for complex selections")
yield self._id
def guess_shape(sid):
""" Given a dataspace, try to deduce the shape of the selection.
Returns one of:
* A tuple with the selection shape, same length as the dataspace
* A 1D selection shape for point-based and multiple-hyperslab selections
* None, for unselected scalars and for NULL dataspaces
"""
sel_class = sid.get_simple_extent_type() # Dataspace class
sel_type = sid.get_select_type() # Flavor of selection in use
if sel_class == h5s.NULL:
# NULL dataspaces don't support selections
return None
elif sel_class == h5s.SCALAR:
# NumPy has no way of expressing empty 0-rank selections, so we use None
if sel_type == h5s.SEL_NONE: return None
if sel_type == h5s.SEL_ALL: return tuple()
elif sel_class != h5s.SIMPLE:
raise TypeError("Unrecognized dataspace class %s" % sel_class)
# We have a "simple" (rank >= 1) dataspace
N = sid.get_select_npoints()
rank = len(sid.shape)
if sel_type == h5s.SEL_NONE:
return (0,)*rank
elif sel_type == h5s.SEL_ALL:
return sid.shape
elif sel_type == h5s.SEL_POINTS:
# Like NumPy, point-based selections yield 1D arrays regardless of
# the dataspace rank
return (N,)
elif sel_type != h5s.SEL_HYPERSLABS:
raise TypeError("Unrecognized selection method %s" % sel_type)
# We have a hyperslab-based selection
if N == 0:
return (0,)*rank
bottomcorner, topcorner = (np.array(x) for x in sid.get_select_bounds())
# Shape of full selection box
boxshape = topcorner - bottomcorner + np.ones((rank,))
def get_n_axis(sid, axis):
""" Determine the number of elements selected along a particular axis.
To do this, we "mask off" the axis by making a hyperslab selection
which leaves only the first point along the axis. For a 2D dataset
with selection box shape (X, Y), for axis 1, this would leave a
selection of shape (X, 1). We count the number of points N_leftover
remaining in the selection and compute the axis selection length by
N_axis = N/N_leftover.
"""
if(boxshape[axis]) == 1:
return 1
start = bottomcorner.copy()
start[axis] += 1
count = boxshape.copy()
count[axis] -= 1
# Throw away all points along this axis
masked_sid = sid.copy()
masked_sid.select_hyperslab(tuple(start), tuple(count), op=h5s.SELECT_NOTB)
N_leftover = masked_sid.get_select_npoints()
return N//N_leftover
shape = tuple(get_n_axis(sid, x) for x in range(rank))
if np.product(shape) != N:
# This means multiple hyperslab selections are in effect,
# so we fall back to a 1D shape
return (N,)
return shape
|