File size: 6,427 Bytes
abf6bf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import argparse
import os
import librosa
import numpy as np
import soundfile as sf
import torch
from tqdm import tqdm
from vocalsplit.lib import dataset
from vocalsplit.lib import nets
from vocalsplit.lib import spec_utils
from vocalsplit.lib import utils
class Separator(object):
def __init__(self, model, device, batchsize, cropsize, postprocess=False):
self.model = model
self.offset = model.offset
self.device = device
self.batchsize = batchsize
self.cropsize = cropsize
self.postprocess = postprocess
def _separate(self, X_mag_pad, roi_size):
X_dataset = []
patches = (X_mag_pad.shape[2] - 2 * self.offset) // roi_size
for i in range(patches):
start = i * roi_size
X_mag_crop = X_mag_pad[:, :, start:start + self.cropsize]
X_dataset.append(X_mag_crop)
X_dataset = np.asarray(X_dataset)
self.model.eval()
with torch.no_grad():
mask = []
# To reduce the overhead, dataloader is not used.
for i in tqdm(range(0, patches, self.batchsize)):
X_batch = X_dataset[i: i + self.batchsize]
X_batch = torch.from_numpy(X_batch).to(self.device)
pred = self.model.predict_mask(X_batch)
pred = pred.detach().cpu().numpy()
pred = np.concatenate(pred, axis=2)
mask.append(pred)
mask = np.concatenate(mask, axis=2)
return mask
def _preprocess(self, X_spec):
X_mag = np.abs(X_spec)
X_phase = np.angle(X_spec)
return X_mag, X_phase
def _postprocess(self, mask, X_mag, X_phase):
if self.postprocess:
mask = spec_utils.merge_artifacts(mask)
y_spec = mask * X_mag * np.exp(1.j * X_phase)
v_spec = (1 - mask) * X_mag * np.exp(1.j * X_phase)
return y_spec, v_spec
def separate(self, X_spec):
X_mag, X_phase = self._preprocess(X_spec)
n_frame = X_mag.shape[2]
pad_l, pad_r, roi_size = dataset.make_padding(n_frame, self.cropsize, self.offset)
X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
X_mag_pad /= X_mag_pad.max()
mask = self._separate(X_mag_pad, roi_size)
mask = mask[:, :, :n_frame]
y_spec, v_spec = self._postprocess(mask, X_mag, X_phase)
return y_spec, v_spec
def separate_tta(self, X_spec):
X_mag, X_phase = self._preprocess(X_spec)
n_frame = X_mag.shape[2]
pad_l, pad_r, roi_size = dataset.make_padding(n_frame, self.cropsize, self.offset)
X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
X_mag_pad /= X_mag_pad.max()
mask = self._separate(X_mag_pad, roi_size)
pad_l += roi_size // 2
pad_r += roi_size // 2
X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
X_mag_pad /= X_mag_pad.max()
mask_tta = self._separate(X_mag_pad, roi_size)
mask_tta = mask_tta[:, :, roi_size // 2:]
mask = (mask[:, :, :n_frame] + mask_tta[:, :, :n_frame]) * 0.5
y_spec, v_spec = self._postprocess(mask, X_mag, X_phase)
return y_spec, v_spec
def main(input_file):
p = argparse.ArgumentParser()
p.add_argument('--gpu', '-g', type=int, default=-1)
p.add_argument('--pretrained_model', '-P', type=str, default='vocalsplit/models/baseline.pth')
p.add_argument('--sr', '-r', type=int, default=44100)
p.add_argument('--n_fft', '-f', type=int, default=2048)
p.add_argument('--hop_length', '-H', type=int, default=1024)
p.add_argument('--batchsize', '-B', type=int, default=4)
p.add_argument('--cropsize', '-c', type=int, default=256)
p.add_argument('--output_image', '-I', action='store_true')
p.add_argument('--postprocess', '-p', action='store_true')
p.add_argument('--tta', '-t', action='store_true')
p.add_argument('--output_dir', '-o', type=str, default="/")
args = p.parse_args()
print('loading model...', end=' ')
device = torch.device('cpu')
model = nets.CascadedNet(args.n_fft, 32, 128)
model.load_state_dict(torch.load(args.pretrained_model, map_location=device))
if args.gpu >= 0:
if torch.cuda.is_available():
device = torch.device('cuda:{}'.format(args.gpu))
model.to(device)
elif torch.backends.mps.is_available() and torch.backends.mps.is_built():
device = torch.device('mps')
model.to(device)
print('done')
print('loading wave source...', end=' ')
X, sr = librosa.load(
input_file, sr=args.sr, mono=False, dtype=np.float32, res_type='kaiser_fast')
basename = os.path.splitext(os.path.basename(input_file))[0]
print('done')
if X.ndim == 1:
# mono to stereo
X = np.asarray([X, X])
print('stft of wave source...', end=' ')
X_spec = spec_utils.wave_to_spectrogram(X, args.hop_length, args.n_fft)
print('done')
sp = Separator(model, device, args.batchsize, args.cropsize, args.postprocess)
if args.tta:
y_spec, v_spec = sp.separate_tta(X_spec)
else:
y_spec, v_spec = sp.separate(X_spec)
print('validating output directory...', end=' ')
output_dir = args.output_dir
if output_dir != "": # modifies output_dir if theres an arg specified
output_dir = output_dir.rstrip('/') + '/'
os.makedirs(output_dir, exist_ok=True)
print('done')
print('inverse stft of instruments...', end=' ')
wave = spec_utils.spectrogram_to_wave(y_spec, hop_length=args.hop_length)
print('done')
sf.write('{}{}_Instruments.wav'.format(output_dir, basename), wave.T, sr)
print('inverse stft of vocals...', end=' ')
wave = spec_utils.spectrogram_to_wave(v_spec, hop_length=args.hop_length)
print('done')
sf.write('{}{}_Vocals.wav'.format(output_dir, basename), wave.T, sr)
if args.output_image:
image = spec_utils.spectrogram_to_image(y_spec)
utils.imwrite('{}{}_Instruments.jpg'.format(output_dir, basename), image)
image = spec_utils.spectrogram_to_image(v_spec)
utils.imwrite('{}{}_Vocals.jpg'.format(output_dir, basename), image)
# input combined_trimmed_original.mp3
# out 1: combined_trimmed_original_Instruments.wav
# out 2: combined_trimmed_original_Vocals.wav |