File size: 7,393 Bytes
abf6bf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import random

import numpy as np
import torch
import torch.utils.data
from tqdm import tqdm

from vocalsplit.lib import spec_utils


class VocalRemoverTrainingSet(torch.utils.data.Dataset):

    def __init__(self, training_set, cropsize, reduction_rate, reduction_weight, mixup_rate, mixup_alpha):
        self.training_set = training_set
        self.cropsize = cropsize
        self.reduction_rate = reduction_rate
        self.reduction_weight = reduction_weight
        self.mixup_rate = mixup_rate
        self.mixup_alpha = mixup_alpha

    def __len__(self):
        return len(self.training_set)

    def do_crop(self, X_path, y_path):
        X_mmap = np.load(X_path, mmap_mode='r')
        y_mmap = np.load(y_path, mmap_mode='r')

        start = np.random.randint(0, X_mmap.shape[2] - self.cropsize)
        end = start + self.cropsize

        X_crop = np.array(X_mmap[:, :, start:end], copy=True)
        y_crop = np.array(y_mmap[:, :, start:end], copy=True)

        return X_crop, y_crop

    def do_aug(self, X, y):
        if np.random.uniform() < self.reduction_rate:
            y = spec_utils.aggressively_remove_vocal(X, y, self.reduction_weight)

        if np.random.uniform() < 0.5:
            # swap channel
            X = X[::-1].copy()
            y = y[::-1].copy()

        if np.random.uniform() < 0.01:
            # inst
            X = y.copy()

        # if np.random.uniform() < 0.01:
        #     # mono
        #     X[:] = X.mean(axis=0, keepdims=True)
        #     y[:] = y.mean(axis=0, keepdims=True)

        return X, y

    def do_mixup(self, X, y):
        idx = np.random.randint(0, len(self))
        X_path, y_path, coef = self.training_set[idx]

        X_i, y_i = self.do_crop(X_path, y_path)
        X_i /= coef
        y_i /= coef

        X_i, y_i = self.do_aug(X_i, y_i)

        lam = np.random.beta(self.mixup_alpha, self.mixup_alpha)
        X = lam * X + (1 - lam) * X_i
        y = lam * y + (1 - lam) * y_i

        return X, y

    def __getitem__(self, idx):
        X_path, y_path, coef = self.training_set[idx]

        X, y = self.do_crop(X_path, y_path)
        X /= coef
        y /= coef

        X, y = self.do_aug(X, y)

        if np.random.uniform() < self.mixup_rate:
            X, y = self.do_mixup(X, y)

        X_mag = np.abs(X)
        y_mag = np.abs(y)

        return X_mag, y_mag


class VocalRemoverValidationSet(torch.utils.data.Dataset):

    def __init__(self, patch_list):
        self.patch_list = patch_list

    def __len__(self):
        return len(self.patch_list)

    def __getitem__(self, idx):
        path = self.patch_list[idx]
        data = np.load(path)

        X, y = data['X'], data['y']

        X_mag = np.abs(X)
        y_mag = np.abs(y)

        return X_mag, y_mag


def make_pair(mix_dir, inst_dir):
    input_exts = ['.wav', '.m4a', '.mp3', '.mp4', '.flac']

    X_list = sorted([
        os.path.join(mix_dir, fname)
        for fname in os.listdir(mix_dir)
        if os.path.splitext(fname)[1] in input_exts
    ])
    y_list = sorted([
        os.path.join(inst_dir, fname)
        for fname in os.listdir(inst_dir)
        if os.path.splitext(fname)[1] in input_exts
    ])

    filelist = list(zip(X_list, y_list))

    return filelist


def train_val_split(dataset_dir, split_mode, val_rate, val_filelist):
    if split_mode == 'random':
        filelist = make_pair(
            os.path.join(dataset_dir, 'mixtures'),
            os.path.join(dataset_dir, 'instruments')
        )

        random.shuffle(filelist)

        if len(val_filelist) == 0:
            val_size = int(len(filelist) * val_rate)
            train_filelist = filelist[:-val_size]
            val_filelist = filelist[-val_size:]
        else:
            train_filelist = [
                pair for pair in filelist
                if list(pair) not in val_filelist
            ]
    elif split_mode == 'subdirs':
        if len(val_filelist) != 0:
            raise ValueError('`val_filelist` option is not available with `subdirs` mode')

        train_filelist = make_pair(
            os.path.join(dataset_dir, 'training/mixtures'),
            os.path.join(dataset_dir, 'training/instruments')
        )

        val_filelist = make_pair(
            os.path.join(dataset_dir, 'validation/mixtures'),
            os.path.join(dataset_dir, 'validation/instruments')
        )

    return train_filelist, val_filelist


def make_padding(width, cropsize, offset):
    left = offset
    roi_size = cropsize - offset * 2
    if roi_size == 0:
        roi_size = cropsize
    right = roi_size - (width % roi_size) + left

    return left, right, roi_size


def make_training_set(filelist, sr, hop_length, n_fft):
    ret = []
    for X_path, y_path in tqdm(filelist):
        X, y, X_cache_path, y_cache_path = spec_utils.cache_or_load(
            X_path, y_path, sr, hop_length, n_fft
        )
        coef = np.max([np.abs(X).max(), np.abs(y).max()])
        ret.append([X_cache_path, y_cache_path, coef])

    return ret


def make_validation_set(filelist, cropsize, sr, hop_length, n_fft, offset):
    patch_list = []
    patch_dir = 'cs{}_sr{}_hl{}_nf{}_of{}'.format(cropsize, sr, hop_length, n_fft, offset)
    os.makedirs(patch_dir, exist_ok=True)

    for X_path, y_path in tqdm(filelist):
        basename = os.path.splitext(os.path.basename(X_path))[0]

        X, y, _, _ = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
        coef = np.max([np.abs(X).max(), np.abs(y).max()])
        X, y = X / coef, y / coef

        l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
        X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
        y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant')

        len_dataset = int(np.ceil(X.shape[2] / roi_size))
        for j in range(len_dataset):
            outpath = os.path.join(patch_dir, '{}_p{}.npz'.format(basename, j))
            start = j * roi_size
            if not os.path.exists(outpath):
                np.savez(
                    outpath,
                    X=X_pad[:, :, start:start + cropsize],
                    y=y_pad[:, :, start:start + cropsize]
                )
            patch_list.append(outpath)

    return patch_list


def get_oracle_data(X, y, oracle_loss, oracle_rate, oracle_drop_rate):
    k = int(len(X) * oracle_rate * (1 / (1 - oracle_drop_rate)))
    n = int(len(X) * oracle_rate)
    indices = np.argsort(oracle_loss)[::-1][:k]
    indices = np.random.choice(indices, n, replace=False)
    oracle_X = X[indices].copy()
    oracle_y = y[indices].copy()

    return oracle_X, oracle_y, indices


if __name__ == "__main__":
    import sys
    import utils

    mix_dir = sys.argv[1]
    inst_dir = sys.argv[2]
    outdir = sys.argv[3]

    os.makedirs(outdir, exist_ok=True)

    filelist = make_pair(mix_dir, inst_dir)
    for mix_path, inst_path in tqdm(filelist):
        mix_basename = os.path.splitext(os.path.basename(mix_path))[0]

        X_spec, y_spec, _, _ = spec_utils.cache_or_load(
            mix_path, inst_path, 44100, 1024, 2048
        )

        X_mag = np.abs(X_spec)
        y_mag = np.abs(y_spec)
        v_mag = X_mag - y_mag
        v_mag *= v_mag > y_mag

        outpath = '{}/{}_Vocal.jpg'.format(outdir, mix_basename)
        v_image = spec_utils.spectrogram_to_image(v_mag)
        utils.imwrite(outpath, v_image)