|
from multiprocessing import cpu_count
|
|
import threading
|
|
from time import sleep
|
|
from subprocess import Popen
|
|
from time import sleep
|
|
import torch, os, traceback, sys, warnings, shutil, numpy as np
|
|
import faiss
|
|
|
|
now_dir = os.getcwd()
|
|
sys.path.append(now_dir)
|
|
tmp = os.path.join(now_dir, "TEMP")
|
|
shutil.rmtree(tmp, ignore_errors=True)
|
|
os.makedirs(tmp, exist_ok=True)
|
|
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
|
|
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True)
|
|
os.environ["TEMP"] = tmp
|
|
warnings.filterwarnings("ignore")
|
|
torch.manual_seed(114514)
|
|
from i18n import I18nAuto
|
|
|
|
i18n = I18nAuto()
|
|
|
|
ncpu = cpu_count()
|
|
ngpu = torch.cuda.device_count()
|
|
gpu_infos = []
|
|
if (not torch.cuda.is_available()) or ngpu == 0:
|
|
if_gpu_ok = False
|
|
else:
|
|
if_gpu_ok = False
|
|
for i in range(ngpu):
|
|
gpu_name = torch.cuda.get_device_name(i)
|
|
if ("16" in gpu_name and "V100" not in gpu_name) or "MX" in gpu_name:
|
|
continue
|
|
if (
|
|
"10" in gpu_name
|
|
or "20" in gpu_name
|
|
or "30" in gpu_name
|
|
or "40" in gpu_name
|
|
or "A2" in gpu_name.upper()
|
|
or "A3" in gpu_name.upper()
|
|
or "A4" in gpu_name.upper()
|
|
or "P4" in gpu_name.upper()
|
|
or "A50" in gpu_name.upper()
|
|
or "70" in gpu_name
|
|
or "80" in gpu_name
|
|
or "90" in gpu_name
|
|
or "M4" in gpu_name
|
|
or "T4" in gpu_name
|
|
or "TITAN" in gpu_name.upper()
|
|
):
|
|
if_gpu_ok = True
|
|
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
|
gpu_info = (
|
|
"\n".join(gpu_infos)
|
|
if if_gpu_ok == True and len(gpu_infos) > 0
|
|
else "很遗憾您这没有能用的显卡来支持您训练"
|
|
)
|
|
gpus = "-".join([i[0] for i in gpu_infos])
|
|
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
|
|
from scipy.io import wavfile
|
|
from fairseq import checkpoint_utils
|
|
import gradio as gr
|
|
import logging
|
|
from vc_infer_pipeline import VC
|
|
from config import (
|
|
is_half,
|
|
device,
|
|
python_cmd,
|
|
listen_port,
|
|
iscolab,
|
|
noparallel,
|
|
noautoopen,
|
|
)
|
|
from infer_uvr5 import _audio_pre_
|
|
from my_utils import load_audio
|
|
from train.process_ckpt import show_info, change_info, merge, extract_small_model
|
|
|
|
|
|
logging.getLogger("numba").setLevel(logging.WARNING)
|
|
|
|
|
|
class ToolButton(gr.Button, gr.components.FormComponent):
|
|
"""Small button with single emoji as text, fits inside gradio forms"""
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(variant="tool", **kwargs)
|
|
|
|
def get_block_name(self):
|
|
return "button"
|
|
|
|
|
|
hubert_model = None
|
|
|
|
|
|
def load_hubert():
|
|
global hubert_model
|
|
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
|
["hubert_base.pt"],
|
|
suffix="",
|
|
)
|
|
hubert_model = models[0]
|
|
hubert_model = hubert_model.to(device)
|
|
if is_half:
|
|
hubert_model = hubert_model.half()
|
|
else:
|
|
hubert_model = hubert_model.float()
|
|
hubert_model.eval()
|
|
|
|
|
|
weight_root = "weights"
|
|
weight_uvr5_root = "uvr5_weights"
|
|
names = []
|
|
for name in os.listdir(weight_root):
|
|
if name.endswith(".pth"):
|
|
names.append(name)
|
|
uvr5_names = []
|
|
for name in os.listdir(weight_uvr5_root):
|
|
if name.endswith(".pth"):
|
|
uvr5_names.append(name.replace(".pth", ""))
|
|
|
|
|
|
def vc_single(
|
|
sid,
|
|
input_audio,
|
|
f0_up_key,
|
|
f0_file,
|
|
f0_method,
|
|
file_index,
|
|
file_big_npy,
|
|
index_rate,
|
|
weights_path,
|
|
):
|
|
global tgt_sr, net_g, vc, hubert_model
|
|
get_vc("", weights_path)
|
|
if input_audio is None:
|
|
return "You need to upload an audio", None
|
|
f0_up_key = int(f0_up_key)
|
|
try:
|
|
audio = load_audio(input_audio, 16000)
|
|
times = [0, 0, 0]
|
|
if hubert_model == None:
|
|
load_hubert()
|
|
if_f0 = cpt.get("f0", 1)
|
|
file_index = (
|
|
file_index.strip(" ")
|
|
.strip('"')
|
|
.strip("\n")
|
|
.strip('"')
|
|
.strip(" ")
|
|
.replace("trained", "added")
|
|
)
|
|
file_big_npy = (
|
|
file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
)
|
|
audio_opt = vc.pipeline(
|
|
hubert_model,
|
|
net_g,
|
|
sid,
|
|
audio,
|
|
times,
|
|
f0_up_key,
|
|
f0_method,
|
|
file_index,
|
|
file_big_npy,
|
|
index_rate,
|
|
if_f0,
|
|
f0_file=f0_file,
|
|
)
|
|
print(
|
|
"npy: ", times[0], "s, f0: ", times[1], "s, infer: ", times[2], "s", sep=""
|
|
)
|
|
return "Success", (tgt_sr, audio_opt)
|
|
except:
|
|
info = traceback.format_exc()
|
|
print(info)
|
|
return info, (None, None)
|
|
|
|
|
|
def vc_multi(
|
|
sid,
|
|
dir_path,
|
|
opt_root,
|
|
paths,
|
|
f0_up_key,
|
|
f0_method,
|
|
file_index,
|
|
file_big_npy,
|
|
index_rate,
|
|
):
|
|
try:
|
|
dir_path = (
|
|
dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
)
|
|
opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
os.makedirs(opt_root, exist_ok=True)
|
|
try:
|
|
if dir_path != "":
|
|
paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)]
|
|
else:
|
|
paths = [path.name for path in paths]
|
|
except:
|
|
traceback.print_exc()
|
|
paths = [path.name for path in paths]
|
|
infos = []
|
|
for path in paths:
|
|
info, opt = vc_single(
|
|
sid,
|
|
path,
|
|
f0_up_key,
|
|
None,
|
|
f0_method,
|
|
file_index,
|
|
file_big_npy,
|
|
index_rate,
|
|
)
|
|
if info == "Success":
|
|
try:
|
|
tgt_sr, audio_opt = opt
|
|
wavfile.write(
|
|
"%s/%s" % (opt_root, os.path.basename(path)), tgt_sr, audio_opt
|
|
)
|
|
except:
|
|
info = traceback.format_exc()
|
|
infos.append("%s->%s" % (os.path.basename(path), info))
|
|
yield "\n".join(infos)
|
|
yield "\n".join(infos)
|
|
except:
|
|
yield traceback.format_exc()
|
|
|
|
|
|
def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins):
|
|
infos = []
|
|
try:
|
|
inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
save_root_vocal = (
|
|
save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
)
|
|
save_root_ins = (
|
|
save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
)
|
|
pre_fun = _audio_pre_(
|
|
model_path=os.path.join(weight_uvr5_root, model_name + ".pth"),
|
|
device=device,
|
|
is_half=is_half,
|
|
)
|
|
if inp_root != "":
|
|
paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)]
|
|
else:
|
|
paths = [path.name for path in paths]
|
|
for name in paths:
|
|
inp_path = os.path.join(inp_root, name)
|
|
try:
|
|
pre_fun._path_audio_(inp_path, save_root_ins, save_root_vocal)
|
|
infos.append("%s->Success" % (os.path.basename(inp_path)))
|
|
yield "\n".join(infos)
|
|
except:
|
|
infos.append(
|
|
"%s->%s" % (os.path.basename(inp_path), traceback.format_exc())
|
|
)
|
|
yield "\n".join(infos)
|
|
except:
|
|
infos.append(traceback.format_exc())
|
|
yield "\n".join(infos)
|
|
finally:
|
|
try:
|
|
del pre_fun.model
|
|
del pre_fun
|
|
except:
|
|
traceback.print_exc()
|
|
print("clean_empty_cache")
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
yield "\n".join(infos)
|
|
|
|
|
|
|
|
def get_vc(sid, weights_path):
|
|
global n_spk, tgt_sr, net_g, vc, cpt
|
|
if sid == []:
|
|
global hubert_model
|
|
if hubert_model != None:
|
|
print("clean_empty_cache")
|
|
del net_g, n_spk, vc, hubert_model, tgt_sr
|
|
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
|
|
if_f0 = cpt.get("f0", 1)
|
|
if if_f0 == 1:
|
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
|
|
else:
|
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
|
del net_g, cpt
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
cpt = None
|
|
return {"visible": False, "__type__": "update"}
|
|
person = "%s/%s" % (weight_root, sid)
|
|
print("loading %s" % person)
|
|
cpt = torch.load(weights_path, map_location="cpu")
|
|
tgt_sr = cpt["config"][-1]
|
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
|
if_f0 = cpt.get("f0", 1)
|
|
if if_f0 == 1:
|
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
|
|
else:
|
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
|
del net_g.enc_q
|
|
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
|
net_g.eval().to(device)
|
|
if is_half:
|
|
net_g = net_g.half()
|
|
else:
|
|
net_g = net_g.float()
|
|
vc = VC(tgt_sr, device, is_half)
|
|
n_spk = cpt["config"][-3]
|
|
return {"visible": True, "maximum": n_spk, "__type__": "update"}
|
|
|
|
|
|
def change_choices():
|
|
names = []
|
|
for name in os.listdir(weight_root):
|
|
if name.endswith(".pth"):
|
|
names.append(name)
|
|
return {"choices": sorted(names), "__type__": "update"}
|
|
|
|
|
|
def clean():
|
|
return {"value": "", "__type__": "update"}
|
|
|
|
|
|
def change_f0(if_f0_3, sr2):
|
|
if if_f0_3 == "是":
|
|
return (
|
|
{"visible": True, "__type__": "update"},
|
|
{"visible": True, "__type__": "update"},
|
|
"pretrained/f0G%s.pth" % sr2,
|
|
"pretrained/f0D%s.pth" % sr2,
|
|
)
|
|
return (
|
|
{"visible": False, "__type__": "update"},
|
|
{"visible": False, "__type__": "update"},
|
|
"pretrained/G%s.pth" % sr2,
|
|
"pretrained/D%s.pth" % sr2,
|
|
)
|
|
|
|
|
|
sr_dict = {
|
|
"32k": 32000,
|
|
"40k": 40000,
|
|
"48k": 48000,
|
|
}
|
|
|
|
|
|
def if_done(done, p):
|
|
while 1:
|
|
if p.poll() == None:
|
|
sleep(0.5)
|
|
else:
|
|
break
|
|
done[0] = True
|
|
|
|
|
|
def if_done_multi(done, ps):
|
|
while 1:
|
|
|
|
|
|
flag = 1
|
|
for p in ps:
|
|
if p.poll() == None:
|
|
flag = 0
|
|
sleep(0.5)
|
|
break
|
|
if flag == 1:
|
|
break
|
|
done[0] = True
|
|
|
|
|
|
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p=ncpu):
|
|
sr = sr_dict[sr]
|
|
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
|
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
|
|
f.close()
|
|
cmd = (
|
|
python_cmd
|
|
+ " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s "
|
|
% (trainset_dir, sr, n_p, now_dir, exp_dir)
|
|
+ str(noparallel)
|
|
)
|
|
print(cmd)
|
|
p = Popen(cmd, shell=True)
|
|
|
|
done = [False]
|
|
threading.Thread(
|
|
target=if_done,
|
|
args=(
|
|
done,
|
|
p,
|
|
),
|
|
).start()
|
|
while 1:
|
|
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
|
yield (f.read())
|
|
sleep(1)
|
|
if done[0] == True:
|
|
break
|
|
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
|
log = f.read()
|
|
print(log)
|
|
yield log
|
|
|
|
|
|
|
|
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir):
|
|
gpus = gpus.split("-")
|
|
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
|
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
|
|
f.close()
|
|
if if_f0 == "是":
|
|
cmd = python_cmd + " extract_f0_print.py %s/logs/%s %s %s" % (
|
|
now_dir,
|
|
exp_dir,
|
|
n_p,
|
|
f0method,
|
|
)
|
|
print(cmd)
|
|
p = Popen(cmd, shell=True, cwd=now_dir)
|
|
|
|
done = [False]
|
|
threading.Thread(
|
|
target=if_done,
|
|
args=(
|
|
done,
|
|
p,
|
|
),
|
|
).start()
|
|
while 1:
|
|
with open(
|
|
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
|
|
) as f:
|
|
yield (f.read())
|
|
sleep(1)
|
|
if done[0] == True:
|
|
break
|
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
|
log = f.read()
|
|
print(log)
|
|
yield log
|
|
|
|
"""
|
|
n_part=int(sys.argv[1])
|
|
i_part=int(sys.argv[2])
|
|
i_gpu=sys.argv[3]
|
|
exp_dir=sys.argv[4]
|
|
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
|
|
"""
|
|
leng = len(gpus)
|
|
ps = []
|
|
for idx, n_g in enumerate(gpus):
|
|
cmd = python_cmd + " extract_feature_print.py %s %s %s %s %s/logs/%s" % (
|
|
device,
|
|
leng,
|
|
idx,
|
|
n_g,
|
|
now_dir,
|
|
exp_dir,
|
|
)
|
|
print(cmd)
|
|
p = Popen(
|
|
cmd, shell=True, cwd=now_dir
|
|
)
|
|
ps.append(p)
|
|
|
|
done = [False]
|
|
threading.Thread(
|
|
target=if_done_multi,
|
|
args=(
|
|
done,
|
|
ps,
|
|
),
|
|
).start()
|
|
while 1:
|
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
|
yield (f.read())
|
|
sleep(1)
|
|
if done[0] == True:
|
|
break
|
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
|
log = f.read()
|
|
print(log)
|
|
yield log
|
|
|
|
|
|
def change_sr2(sr2, if_f0_3):
|
|
if if_f0_3 == "是":
|
|
return "pretrained/f0G%s.pth" % sr2, "pretrained/f0D%s.pth" % sr2
|
|
else:
|
|
return "pretrained/G%s.pth" % sr2, "pretrained/D%s.pth" % sr2
|
|
|
|
|
|
|
|
def click_train(
|
|
exp_dir1,
|
|
sr2,
|
|
if_f0_3,
|
|
spk_id5,
|
|
save_epoch10,
|
|
total_epoch11,
|
|
batch_size12,
|
|
if_save_latest13,
|
|
pretrained_G14,
|
|
pretrained_D15,
|
|
gpus16,
|
|
if_cache_gpu17,
|
|
):
|
|
|
|
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
|
os.makedirs(exp_dir, exist_ok=True)
|
|
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
|
co256_dir = "%s/3_feature256" % (exp_dir)
|
|
if if_f0_3 == "是":
|
|
f0_dir = "%s/2a_f0" % (exp_dir)
|
|
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
|
names = (
|
|
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
|
& set([name.split(".")[0] for name in os.listdir(co256_dir)])
|
|
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
|
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
|
)
|
|
else:
|
|
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
|
[name.split(".")[0] for name in os.listdir(co256_dir)]
|
|
)
|
|
opt = []
|
|
for name in names:
|
|
if if_f0_3 == "是":
|
|
opt.append(
|
|
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
|
% (
|
|
gt_wavs_dir.replace("\\", "\\\\"),
|
|
name,
|
|
co256_dir.replace("\\", "\\\\"),
|
|
name,
|
|
f0_dir.replace("\\", "\\\\"),
|
|
name,
|
|
f0nsf_dir.replace("\\", "\\\\"),
|
|
name,
|
|
spk_id5,
|
|
)
|
|
)
|
|
else:
|
|
opt.append(
|
|
"%s/%s.wav|%s/%s.npy|%s"
|
|
% (
|
|
gt_wavs_dir.replace("\\", "\\\\"),
|
|
name,
|
|
co256_dir.replace("\\", "\\\\"),
|
|
name,
|
|
spk_id5,
|
|
)
|
|
)
|
|
if if_f0_3 == "是":
|
|
opt.append(
|
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
|
% (now_dir, sr2, now_dir, now_dir, now_dir, spk_id5)
|
|
)
|
|
else:
|
|
opt.append(
|
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s"
|
|
% (now_dir, sr2, now_dir, spk_id5)
|
|
)
|
|
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
|
f.write("\n".join(opt))
|
|
print("write filelist done")
|
|
|
|
|
|
print("use gpus:", gpus16)
|
|
if gpus16:
|
|
cmd = (
|
|
python_cmd
|
|
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s -pg %s -pd %s -l %s -c %s"
|
|
% (
|
|
exp_dir1,
|
|
sr2,
|
|
1 if if_f0_3 == "是" else 0,
|
|
batch_size12,
|
|
gpus16,
|
|
total_epoch11,
|
|
save_epoch10,
|
|
pretrained_G14,
|
|
pretrained_D15,
|
|
1 if if_save_latest13 == "是" else 0,
|
|
1 if if_cache_gpu17 == "是" else 0,
|
|
)
|
|
)
|
|
else:
|
|
cmd = (
|
|
python_cmd
|
|
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s -pg %s -pd %s -l %s -c %s"
|
|
% (
|
|
exp_dir1,
|
|
sr2,
|
|
1 if if_f0_3 == "是" else 0,
|
|
batch_size12,
|
|
total_epoch11,
|
|
save_epoch10,
|
|
pretrained_G14,
|
|
pretrained_D15,
|
|
1 if if_save_latest13 == "是" else 0,
|
|
1 if if_cache_gpu17 == "是" else 0,
|
|
)
|
|
)
|
|
print(cmd)
|
|
p = Popen(cmd, shell=True, cwd=now_dir)
|
|
p.wait()
|
|
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
|
|
|
|
|
|
|
|
def train_index(exp_dir1):
|
|
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
|
os.makedirs(exp_dir, exist_ok=True)
|
|
feature_dir = "%s/3_feature256" % (exp_dir)
|
|
if os.path.exists(feature_dir) == False:
|
|
return "请先进行特征提取!"
|
|
listdir_res = list(os.listdir(feature_dir))
|
|
if len(listdir_res) == 0:
|
|
return "请先进行特征提取!"
|
|
npys = []
|
|
for name in sorted(listdir_res):
|
|
phone = np.load("%s/%s" % (feature_dir, name))
|
|
npys.append(phone)
|
|
big_npy = np.concatenate(npys, 0)
|
|
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
|
n_ivf = big_npy.shape[0] // 39
|
|
infos = []
|
|
infos.append("%s,%s" % (big_npy.shape, n_ivf))
|
|
yield "\n".join(infos)
|
|
index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf)
|
|
infos.append("training")
|
|
yield "\n".join(infos)
|
|
index_ivf = faiss.extract_index_ivf(index)
|
|
index_ivf.nprobe = int(np.power(n_ivf, 0.3))
|
|
index.train(big_npy)
|
|
faiss.write_index(
|
|
index,
|
|
"%s/trained_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
|
|
)
|
|
infos.append("adding")
|
|
yield "\n".join(infos)
|
|
index.add(big_npy)
|
|
faiss.write_index(
|
|
index,
|
|
"%s/added_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
|
|
)
|
|
infos.append("成功构建索引, added_IVF%s_Flat_nprobe_%s.index" % (n_ivf, index_ivf.nprobe))
|
|
yield "\n".join(infos)
|
|
|
|
|
|
|
|
def train1key(
|
|
exp_dir1,
|
|
sr2,
|
|
if_f0_3,
|
|
trainset_dir4,
|
|
spk_id5,
|
|
gpus6,
|
|
np7,
|
|
f0method8,
|
|
save_epoch10,
|
|
total_epoch11,
|
|
batch_size12,
|
|
if_save_latest13,
|
|
pretrained_G14,
|
|
pretrained_D15,
|
|
gpus16,
|
|
if_cache_gpu17,
|
|
):
|
|
infos = []
|
|
|
|
def get_info_str(strr):
|
|
infos.append(strr)
|
|
return "\n".join(infos)
|
|
|
|
os.makedirs("%s/logs/%s" % (now_dir, exp_dir1), exist_ok=True)
|
|
|
|
open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir1), "w").close()
|
|
cmd = (
|
|
python_cmd
|
|
+ " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s "
|
|
% (trainset_dir4, sr_dict[sr2], ncpu, now_dir, exp_dir1)
|
|
+ str(noparallel)
|
|
)
|
|
yield get_info_str("step1:正在处理数据")
|
|
yield get_info_str(cmd)
|
|
p = Popen(cmd, shell=True)
|
|
p.wait()
|
|
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir1), "r") as f:
|
|
print(f.read())
|
|
|
|
open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir1), "w")
|
|
if if_f0_3 == "是":
|
|
yield get_info_str("step2a:正在提取音高")
|
|
cmd = python_cmd + " extract_f0_print.py %s/logs/%s %s %s" % (
|
|
now_dir,
|
|
exp_dir1,
|
|
np7,
|
|
f0method8,
|
|
)
|
|
yield get_info_str(cmd)
|
|
p = Popen(cmd, shell=True, cwd=now_dir)
|
|
p.wait()
|
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir1), "r") as f:
|
|
print(f.read())
|
|
else:
|
|
yield get_info_str("step2a:无需提取音高")
|
|
|
|
yield get_info_str("step2b:正在提取特征")
|
|
gpus = gpus16.split("-")
|
|
leng = len(gpus)
|
|
ps = []
|
|
for idx, n_g in enumerate(gpus):
|
|
cmd = python_cmd + " extract_feature_print.py %s %s %s %s %s/logs/%s" % (
|
|
device,
|
|
leng,
|
|
idx,
|
|
n_g,
|
|
now_dir,
|
|
exp_dir1,
|
|
)
|
|
yield get_info_str(cmd)
|
|
p = Popen(
|
|
cmd, shell=True, cwd=now_dir
|
|
)
|
|
ps.append(p)
|
|
for p in ps:
|
|
p.wait()
|
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir1), "r") as f:
|
|
print(f.read())
|
|
|
|
yield get_info_str("step3a:正在训练模型")
|
|
|
|
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
|
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
|
co256_dir = "%s/3_feature256" % (exp_dir)
|
|
if if_f0_3 == "是":
|
|
f0_dir = "%s/2a_f0" % (exp_dir)
|
|
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
|
names = (
|
|
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
|
& set([name.split(".")[0] for name in os.listdir(co256_dir)])
|
|
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
|
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
|
)
|
|
else:
|
|
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
|
[name.split(".")[0] for name in os.listdir(co256_dir)]
|
|
)
|
|
opt = []
|
|
for name in names:
|
|
if if_f0_3 == "是":
|
|
opt.append(
|
|
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
|
% (
|
|
gt_wavs_dir.replace("\\", "\\\\"),
|
|
name,
|
|
co256_dir.replace("\\", "\\\\"),
|
|
name,
|
|
f0_dir.replace("\\", "\\\\"),
|
|
name,
|
|
f0nsf_dir.replace("\\", "\\\\"),
|
|
name,
|
|
spk_id5,
|
|
)
|
|
)
|
|
else:
|
|
opt.append(
|
|
"%s/%s.wav|%s/%s.npy|%s"
|
|
% (
|
|
gt_wavs_dir.replace("\\", "\\\\"),
|
|
name,
|
|
co256_dir.replace("\\", "\\\\"),
|
|
name,
|
|
spk_id5,
|
|
)
|
|
)
|
|
if if_f0_3 == "是":
|
|
opt.append(
|
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
|
% (now_dir, sr2, now_dir, now_dir, now_dir, spk_id5)
|
|
)
|
|
else:
|
|
opt.append(
|
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s"
|
|
% (now_dir, sr2, now_dir, spk_id5)
|
|
)
|
|
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
|
f.write("\n".join(opt))
|
|
yield get_info_str("write filelist done")
|
|
if gpus16:
|
|
cmd = (
|
|
python_cmd
|
|
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s -pg %s -pd %s -l %s -c %s"
|
|
% (
|
|
exp_dir1,
|
|
sr2,
|
|
1 if if_f0_3 == "是" else 0,
|
|
batch_size12,
|
|
gpus16,
|
|
total_epoch11,
|
|
save_epoch10,
|
|
pretrained_G14,
|
|
pretrained_D15,
|
|
1 if if_save_latest13 == "是" else 0,
|
|
1 if if_cache_gpu17 == "是" else 0,
|
|
)
|
|
)
|
|
else:
|
|
cmd = (
|
|
python_cmd
|
|
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s -pg %s -pd %s -l %s -c %s"
|
|
% (
|
|
exp_dir1,
|
|
sr2,
|
|
1 if if_f0_3 == "是" else 0,
|
|
batch_size12,
|
|
total_epoch11,
|
|
save_epoch10,
|
|
pretrained_G14,
|
|
pretrained_D15,
|
|
1 if if_save_latest13 == "是" else 0,
|
|
1 if if_cache_gpu17 == "是" else 0,
|
|
)
|
|
)
|
|
yield get_info_str(cmd)
|
|
p = Popen(cmd, shell=True, cwd=now_dir)
|
|
p.wait()
|
|
yield get_info_str("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log")
|
|
|
|
feature_dir = "%s/3_feature256" % (exp_dir)
|
|
npys = []
|
|
listdir_res = list(os.listdir(feature_dir))
|
|
for name in sorted(listdir_res):
|
|
phone = np.load("%s/%s" % (feature_dir, name))
|
|
npys.append(phone)
|
|
big_npy = np.concatenate(npys, 0)
|
|
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
|
n_ivf = big_npy.shape[0] // 39
|
|
yield get_info_str("%s,%s" % (big_npy.shape, n_ivf))
|
|
index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf)
|
|
yield get_info_str("training index")
|
|
index_ivf = faiss.extract_index_ivf(index)
|
|
index_ivf.nprobe = int(np.power(n_ivf, 0.3))
|
|
index.train(big_npy)
|
|
faiss.write_index(
|
|
index,
|
|
"%s/trained_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
|
|
)
|
|
yield get_info_str("adding index")
|
|
index.add(big_npy)
|
|
faiss.write_index(
|
|
index,
|
|
"%s/added_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
|
|
)
|
|
yield get_info_str(
|
|
"成功构建索引, added_IVF%s_Flat_nprobe_%s.index" % (n_ivf, index_ivf.nprobe)
|
|
)
|
|
yield get_info_str("全流程结束!")
|
|
|
|
|
|
|
|
def change_info_(ckpt_path):
|
|
if (
|
|
os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log"))
|
|
== False
|
|
):
|
|
return {"__type__": "update"}, {"__type__": "update"}
|
|
try:
|
|
with open(
|
|
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
|
|
) as f:
|
|
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
|
|
sr, f0 = info["sample_rate"], info["if_f0"]
|
|
return sr, str(f0)
|
|
except:
|
|
traceback.print_exc()
|
|
return {"__type__": "update"}, {"__type__": "update"}
|
|
|
|
|
|
from infer_pack.models_onnx_moess import SynthesizerTrnMs256NSFsidM
|
|
from infer_pack.models_onnx import SynthesizerTrnMs256NSFsidO
|
|
|
|
|
|
def export_onnx(ModelPath, ExportedPath, MoeVS=True):
|
|
hidden_channels = 256
|
|
cpt = torch.load(ModelPath, map_location="cpu")
|
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
|
print(*cpt["config"])
|
|
|
|
test_phone = torch.rand(1, 200, hidden_channels)
|
|
test_phone_lengths = torch.tensor([200]).long()
|
|
test_pitch = torch.randint(size=(1, 200), low=5, high=255)
|
|
test_pitchf = torch.rand(1, 200)
|
|
test_ds = torch.LongTensor([0])
|
|
test_rnd = torch.rand(1, 192, 200)
|
|
|
|
device = "cpu"
|
|
|
|
if MoeVS:
|
|
net_g = SynthesizerTrnMs256NSFsidM(
|
|
*cpt["config"], is_half=False
|
|
)
|
|
net_g.load_state_dict(cpt["weight"], strict=False)
|
|
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
|
|
output_names = [
|
|
"audio",
|
|
]
|
|
torch.onnx.export(
|
|
net_g,
|
|
(
|
|
test_phone.to(device),
|
|
test_phone_lengths.to(device),
|
|
test_pitch.to(device),
|
|
test_pitchf.to(device),
|
|
test_ds.to(device),
|
|
test_rnd.to(device),
|
|
),
|
|
ExportedPath,
|
|
dynamic_axes={
|
|
"phone": [1],
|
|
"pitch": [1],
|
|
"pitchf": [1],
|
|
"rnd": [2],
|
|
},
|
|
do_constant_folding=False,
|
|
opset_version=16,
|
|
verbose=False,
|
|
input_names=input_names,
|
|
output_names=output_names,
|
|
)
|
|
else:
|
|
net_g = SynthesizerTrnMs256NSFsidO(
|
|
*cpt["config"], is_half=False
|
|
)
|
|
net_g.load_state_dict(cpt["weight"], strict=False)
|
|
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds"]
|
|
output_names = [
|
|
"audio",
|
|
]
|
|
torch.onnx.export(
|
|
net_g,
|
|
(
|
|
test_phone.to(device),
|
|
test_phone_lengths.to(device),
|
|
test_pitch.to(device),
|
|
test_pitchf.to(device),
|
|
test_ds.to(device),
|
|
),
|
|
ExportedPath,
|
|
dynamic_axes={
|
|
"phone": [1],
|
|
"pitch": [1],
|
|
"pitchf": [1],
|
|
},
|
|
do_constant_folding=False,
|
|
opset_version=16,
|
|
verbose=False,
|
|
input_names=input_names,
|
|
output_names=output_names,
|
|
)
|
|
return "Finished" |