|
import os, sys, torch, warnings, pdb |
|
|
|
warnings.filterwarnings("ignore") |
|
import librosa |
|
import importlib |
|
import numpy as np |
|
import hashlib, math |
|
from tqdm import tqdm |
|
from uvr5_pack.lib_v5 import spec_utils |
|
from uvr5_pack.utils import _get_name_params, inference |
|
from uvr5_pack.lib_v5.model_param_init import ModelParameters |
|
from scipy.io import wavfile |
|
|
|
|
|
class _audio_pre_: |
|
def __init__(self, model_path, device, is_half): |
|
self.model_path = model_path |
|
self.device = device |
|
self.data = { |
|
|
|
"postprocess": False, |
|
"tta": False, |
|
|
|
"window_size": 512, |
|
"agg": 10, |
|
"high_end_process": "mirroring", |
|
} |
|
nn_arch_sizes = [ |
|
31191, |
|
33966, |
|
61968, |
|
123821, |
|
123812, |
|
537238, |
|
] |
|
self.nn_architecture = list("{}KB".format(s) for s in nn_arch_sizes) |
|
model_size = math.ceil(os.stat(model_path).st_size / 1024) |
|
nn_architecture = "{}KB".format( |
|
min(nn_arch_sizes, key=lambda x: abs(x - model_size)) |
|
) |
|
nets = importlib.import_module( |
|
"uvr5_pack.lib_v5.nets" |
|
+ f"_{nn_architecture}".replace("_{}KB".format(nn_arch_sizes[0]), ""), |
|
package=None, |
|
) |
|
model_hash = hashlib.md5(open(model_path, "rb").read()).hexdigest() |
|
param_name, model_params_d = _get_name_params(model_path, model_hash) |
|
|
|
mp = ModelParameters(model_params_d) |
|
model = nets.CascadedASPPNet(mp.param["bins"] * 2) |
|
cpk = torch.load(model_path, map_location="cpu") |
|
model.load_state_dict(cpk) |
|
model.eval() |
|
if is_half: |
|
model = model.half().to(device) |
|
else: |
|
model = model.to(device) |
|
|
|
self.mp = mp |
|
self.model = model |
|
|
|
def _path_audio_(self, music_file, ins_root=None, vocal_root=None): |
|
if ins_root is None and vocal_root is None: |
|
return "No save root." |
|
name = os.path.basename(music_file) |
|
if ins_root is not None: |
|
os.makedirs(ins_root, exist_ok=True) |
|
if vocal_root is not None: |
|
os.makedirs(vocal_root, exist_ok=True) |
|
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {} |
|
bands_n = len(self.mp.param["band"]) |
|
|
|
for d in range(bands_n, 0, -1): |
|
bp = self.mp.param["band"][d] |
|
if d == bands_n: |
|
( |
|
X_wave[d], |
|
_, |
|
) = librosa.core.load( |
|
music_file, |
|
bp["sr"], |
|
False, |
|
dtype=np.float32, |
|
res_type=bp["res_type"], |
|
) |
|
if X_wave[d].ndim == 1: |
|
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]]) |
|
else: |
|
X_wave[d] = librosa.core.resample( |
|
X_wave[d + 1], |
|
self.mp.param["band"][d + 1]["sr"], |
|
bp["sr"], |
|
res_type=bp["res_type"], |
|
) |
|
|
|
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt( |
|
X_wave[d], |
|
bp["hl"], |
|
bp["n_fft"], |
|
self.mp.param["mid_side"], |
|
self.mp.param["mid_side_b2"], |
|
self.mp.param["reverse"], |
|
) |
|
|
|
if d == bands_n and self.data["high_end_process"] != "none": |
|
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + ( |
|
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"] |
|
) |
|
input_high_end = X_spec_s[d][ |
|
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, : |
|
] |
|
|
|
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp) |
|
aggresive_set = float(self.data["agg"] / 100) |
|
aggressiveness = { |
|
"value": aggresive_set, |
|
"split_bin": self.mp.param["band"][1]["crop_stop"], |
|
} |
|
with torch.no_grad(): |
|
pred, X_mag, X_phase = inference( |
|
X_spec_m, self.device, self.model, aggressiveness, self.data |
|
) |
|
|
|
if self.data["postprocess"]: |
|
pred_inv = np.clip(X_mag - pred, 0, np.inf) |
|
pred = spec_utils.mask_silence(pred, pred_inv) |
|
y_spec_m = pred * X_phase |
|
v_spec_m = X_spec_m - y_spec_m |
|
|
|
if ins_root is not None: |
|
if self.data["high_end_process"].startswith("mirroring"): |
|
input_high_end_ = spec_utils.mirroring( |
|
self.data["high_end_process"], y_spec_m, input_high_end, self.mp |
|
) |
|
wav_instrument = spec_utils.cmb_spectrogram_to_wave( |
|
y_spec_m, self.mp, input_high_end_h, input_high_end_ |
|
) |
|
else: |
|
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp) |
|
print("%s instruments done" % name) |
|
wavfile.write( |
|
os.path.join(ins_root, "instrument_{}.wav".format(name)), |
|
self.mp.param["sr"], |
|
(np.array(wav_instrument) * 32768).astype("int16"), |
|
) |
|
if vocal_root is not None: |
|
if self.data["high_end_process"].startswith("mirroring"): |
|
input_high_end_ = spec_utils.mirroring( |
|
self.data["high_end_process"], v_spec_m, input_high_end, self.mp |
|
) |
|
wav_vocals = spec_utils.cmb_spectrogram_to_wave( |
|
v_spec_m, self.mp, input_high_end_h, input_high_end_ |
|
) |
|
else: |
|
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp) |
|
print("%s vocals done" % name) |
|
wavfile.write( |
|
os.path.join(vocal_root, "vocal_{}.wav".format(name)), |
|
self.mp.param["sr"], |
|
(np.array(wav_vocals) * 32768).astype("int16"), |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
device = "cuda" |
|
is_half = True |
|
model_path = "uvr5_weights/2_HP-UVR.pth" |
|
pre_fun = _audio_pre_(model_path=model_path, device=device, is_half=True) |
|
audio_path = "神女劈观.aac" |
|
save_path = "opt" |
|
pre_fun._path_audio_(audio_path, save_path, save_path) |
|
|