|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Dataset testing operations. |
|
|
|
Tests all dataset operations, including creation, with the exception of: |
|
|
|
1. Slicing operations for read and write, handled by module test_slicing |
|
2. Type conversion for read and write (currently untested) |
|
""" |
|
|
|
import pathlib |
|
import os |
|
import sys |
|
import numpy as np |
|
import platform |
|
import pytest |
|
import warnings |
|
|
|
from .common import ut, TestCase |
|
from .data_files import get_data_file_path |
|
from h5py import File, Group, Dataset |
|
from h5py._hl.base import is_empty_dataspace |
|
from h5py import h5f, h5t |
|
from h5py.h5py_warnings import H5pyDeprecationWarning |
|
from h5py import version |
|
import h5py |
|
import h5py._hl.selections as sel |
|
|
|
|
|
class BaseDataset(TestCase): |
|
def setUp(self): |
|
self.f = File(self.mktemp(), 'w') |
|
|
|
def tearDown(self): |
|
if self.f: |
|
self.f.close() |
|
|
|
|
|
class TestRepr(BaseDataset): |
|
""" |
|
Feature: repr(Dataset) behaves sensibly |
|
""" |
|
|
|
def test_repr_open(self): |
|
""" repr() works on live and dead datasets """ |
|
ds = self.f.create_dataset('foo', (4,)) |
|
self.assertIsInstance(repr(ds), str) |
|
self.f.close() |
|
self.assertIsInstance(repr(ds), str) |
|
|
|
|
|
class TestCreateShape(BaseDataset): |
|
|
|
""" |
|
Feature: Datasets can be created from a shape only |
|
""" |
|
|
|
def test_create_scalar(self): |
|
""" Create a scalar dataset """ |
|
dset = self.f.create_dataset('foo', ()) |
|
self.assertEqual(dset.shape, ()) |
|
|
|
def test_create_simple(self): |
|
""" Create a size-1 dataset """ |
|
dset = self.f.create_dataset('foo', (1,)) |
|
self.assertEqual(dset.shape, (1,)) |
|
|
|
def test_create_integer(self): |
|
""" Create a size-1 dataset with integer shape""" |
|
dset = self.f.create_dataset('foo', 1) |
|
self.assertEqual(dset.shape, (1,)) |
|
|
|
def test_create_extended(self): |
|
""" Create an extended dataset """ |
|
dset = self.f.create_dataset('foo', (63,)) |
|
self.assertEqual(dset.shape, (63,)) |
|
self.assertEqual(dset.size, 63) |
|
dset = self.f.create_dataset('bar', (6, 10)) |
|
self.assertEqual(dset.shape, (6, 10)) |
|
self.assertEqual(dset.size, (60)) |
|
|
|
def test_create_integer_extended(self): |
|
""" Create an extended dataset """ |
|
dset = self.f.create_dataset('foo', 63) |
|
self.assertEqual(dset.shape, (63,)) |
|
self.assertEqual(dset.size, 63) |
|
dset = self.f.create_dataset('bar', (6, 10)) |
|
self.assertEqual(dset.shape, (6, 10)) |
|
self.assertEqual(dset.size, (60)) |
|
|
|
def test_default_dtype(self): |
|
""" Confirm that the default dtype is float """ |
|
dset = self.f.create_dataset('foo', (63,)) |
|
self.assertEqual(dset.dtype, np.dtype('=f4')) |
|
|
|
def test_missing_shape(self): |
|
""" Missing shape raises TypeError """ |
|
with self.assertRaises(TypeError): |
|
self.f.create_dataset('foo') |
|
|
|
def test_long_double(self): |
|
""" Confirm that the default dtype is float """ |
|
dset = self.f.create_dataset('foo', (63,), dtype=np.longdouble) |
|
if platform.machine() in ['ppc64le']: |
|
pytest.xfail("Storage of long double deactivated on %s" % platform.machine()) |
|
self.assertEqual(dset.dtype, np.longdouble) |
|
|
|
@ut.skipIf(not hasattr(np, "complex256"), "No support for complex256") |
|
def test_complex256(self): |
|
""" Confirm that the default dtype is float """ |
|
dset = self.f.create_dataset('foo', (63,), |
|
dtype=np.dtype('complex256')) |
|
self.assertEqual(dset.dtype, np.dtype('complex256')) |
|
|
|
def test_name_bytes(self): |
|
dset = self.f.create_dataset(b'foo', (1,)) |
|
self.assertEqual(dset.shape, (1,)) |
|
|
|
dset2 = self.f.create_dataset(b'bar/baz', (2,)) |
|
self.assertEqual(dset2.shape, (2,)) |
|
|
|
class TestCreateData(BaseDataset): |
|
|
|
""" |
|
Feature: Datasets can be created from existing data |
|
""" |
|
|
|
def test_create_scalar(self): |
|
""" Create a scalar dataset from existing array """ |
|
data = np.ones((), 'f') |
|
dset = self.f.create_dataset('foo', data=data) |
|
self.assertEqual(dset.shape, data.shape) |
|
|
|
def test_create_extended(self): |
|
""" Create an extended dataset from existing data """ |
|
data = np.ones((63,), 'f') |
|
dset = self.f.create_dataset('foo', data=data) |
|
self.assertEqual(dset.shape, data.shape) |
|
|
|
def test_dataset_intermediate_group(self): |
|
""" Create dataset with missing intermediate groups """ |
|
ds = self.f.create_dataset("/foo/bar/baz", shape=(10, 10), dtype='<i4') |
|
self.assertIsInstance(ds, h5py.Dataset) |
|
self.assertTrue("/foo/bar/baz" in self.f) |
|
|
|
def test_reshape(self): |
|
""" Create from existing data, and make it fit a new shape """ |
|
data = np.arange(30, dtype='f') |
|
dset = self.f.create_dataset('foo', shape=(10, 3), data=data) |
|
self.assertEqual(dset.shape, (10, 3)) |
|
self.assertArrayEqual(dset[...], data.reshape((10, 3))) |
|
|
|
def test_appropriate_low_level_id(self): |
|
" Binding Dataset to a non-DatasetID identifier fails with ValueError " |
|
with self.assertRaises(ValueError): |
|
Dataset(self.f['/'].id) |
|
|
|
def check_h5_string(self, dset, cset, length): |
|
tid = dset.id.get_type() |
|
assert isinstance(tid, h5t.TypeStringID) |
|
assert tid.get_cset() == cset |
|
if length is None: |
|
assert tid.is_variable_str() |
|
else: |
|
assert not tid.is_variable_str() |
|
assert tid.get_size() == length |
|
|
|
def test_create_bytestring(self): |
|
""" Creating dataset with byte string yields vlen ASCII dataset """ |
|
def check_vlen_ascii(dset): |
|
self.check_h5_string(dset, h5t.CSET_ASCII, length=None) |
|
check_vlen_ascii(self.f.create_dataset('a', data=b'abc')) |
|
check_vlen_ascii(self.f.create_dataset('b', data=[b'abc', b'def'])) |
|
check_vlen_ascii(self.f.create_dataset('c', data=[[b'abc'], [b'def']])) |
|
check_vlen_ascii(self.f.create_dataset( |
|
'd', data=np.array([b'abc', b'def'], dtype=object) |
|
)) |
|
|
|
def test_create_np_s(self): |
|
dset = self.f.create_dataset('a', data=np.array([b'abc', b'def'], dtype='S3')) |
|
self.check_h5_string(dset, h5t.CSET_ASCII, length=3) |
|
|
|
def test_create_strings(self): |
|
def check_vlen_utf8(dset): |
|
self.check_h5_string(dset, h5t.CSET_UTF8, length=None) |
|
check_vlen_utf8(self.f.create_dataset('a', data='abc')) |
|
check_vlen_utf8(self.f.create_dataset('b', data=['abc', 'def'])) |
|
check_vlen_utf8(self.f.create_dataset('c', data=[['abc'], ['def']])) |
|
check_vlen_utf8(self.f.create_dataset( |
|
'd', data=np.array(['abc', 'def'], dtype=object) |
|
)) |
|
|
|
def test_create_np_u(self): |
|
with self.assertRaises(TypeError): |
|
self.f.create_dataset('a', data=np.array([b'abc', b'def'], dtype='U3')) |
|
|
|
def test_empty_create_via_None_shape(self): |
|
self.f.create_dataset('foo', dtype='f') |
|
self.assertTrue(is_empty_dataspace(self.f['foo'].id)) |
|
|
|
def test_empty_create_via_Empty_class(self): |
|
self.f.create_dataset('foo', data=h5py.Empty(dtype='f')) |
|
self.assertTrue(is_empty_dataspace(self.f['foo'].id)) |
|
|
|
def test_create_incompatible_data(self): |
|
|
|
with self.assertRaises(ValueError): |
|
self.f.create_dataset('bar', shape=4, data= np.arange(3)) |
|
|
|
|
|
class TestReadDirectly: |
|
|
|
""" |
|
Feature: Read data directly from Dataset into a Numpy array |
|
""" |
|
|
|
@pytest.mark.parametrize( |
|
'source_shape,dest_shape,source_sel,dest_sel', |
|
[ |
|
((100,), (100,), np.s_[0:10], np.s_[50:60]), |
|
((70,), (100,), np.s_[50:60], np.s_[90:]), |
|
((30, 10), (20, 20), np.s_[:20, :], np.s_[:, :10]), |
|
((5, 7, 9), (6,), np.s_[2, :6, 3], np.s_[:]), |
|
]) |
|
def test_read_direct(self, writable_file, source_shape, dest_shape, source_sel, dest_sel): |
|
source_values = np.arange(np.product(source_shape), dtype="int64").reshape(source_shape) |
|
dset = writable_file.create_dataset("dset", source_shape, data=source_values) |
|
arr = np.full(dest_shape, -1, dtype="int64") |
|
expected = arr.copy() |
|
expected[dest_sel] = source_values[source_sel] |
|
|
|
dset.read_direct(arr, source_sel, dest_sel) |
|
np.testing.assert_array_equal(arr, expected) |
|
|
|
def test_no_sel(self, writable_file): |
|
dset = writable_file.create_dataset("dset", (10,), data=np.arange(10, dtype="int64")) |
|
arr = np.ones((10,), dtype="int64") |
|
dset.read_direct(arr) |
|
np.testing.assert_array_equal(arr, np.arange(10, dtype="int64")) |
|
|
|
def test_empty(self, writable_file): |
|
empty_dset = writable_file.create_dataset("edset", dtype='int64') |
|
arr = np.ones((100,), 'int64') |
|
with pytest.raises(TypeError): |
|
empty_dset.read_direct(arr, np.s_[0:10], np.s_[50:60]) |
|
|
|
def test_wrong_shape(self, writable_file): |
|
dset = writable_file.create_dataset("dset", (100,), dtype='int64') |
|
arr = np.ones((200,)) |
|
with pytest.raises(TypeError): |
|
dset.read_direct(arr) |
|
|
|
def test_not_c_contiguous(self, writable_file): |
|
dset = writable_file.create_dataset("dset", (10, 10), dtype='int64') |
|
arr = np.ones((10, 10), order='F') |
|
with pytest.raises(TypeError): |
|
dset.read_direct(arr) |
|
|
|
class TestWriteDirectly: |
|
|
|
""" |
|
Feature: Write Numpy array directly into Dataset |
|
""" |
|
|
|
@pytest.mark.parametrize( |
|
'source_shape,dest_shape,source_sel,dest_sel', |
|
[ |
|
((100,), (100,), np.s_[0:10], np.s_[50:60]), |
|
((70,), (100,), np.s_[50:60], np.s_[90:]), |
|
((30, 10), (20, 20), np.s_[:20, :], np.s_[:, :10]), |
|
((5, 7, 9), (6,), np.s_[2, :6, 3], np.s_[:]), |
|
]) |
|
def test_write_direct(self, writable_file, source_shape, dest_shape, source_sel, dest_sel): |
|
dset = writable_file.create_dataset('dset', dest_shape, dtype='int32', fillvalue=-1) |
|
arr = np.arange(np.product(source_shape)).reshape(source_shape) |
|
expected = np.full(dest_shape, -1, dtype='int32') |
|
expected[dest_sel] = arr[source_sel] |
|
dset.write_direct(arr, source_sel, dest_sel) |
|
np.testing.assert_array_equal(dset[:], expected) |
|
|
|
def test_empty(self, writable_file): |
|
empty_dset = writable_file.create_dataset("edset", dtype='int64') |
|
with pytest.raises(TypeError): |
|
empty_dset.write_direct(np.ones((100,)), np.s_[0:10], np.s_[50:60]) |
|
|
|
def test_wrong_shape(self, writable_file): |
|
dset = writable_file.create_dataset("dset", (100,), dtype='int64') |
|
arr = np.ones((200,)) |
|
with pytest.raises(TypeError): |
|
dset.write_direct(arr) |
|
|
|
def test_not_c_contiguous(self, writable_file): |
|
dset = writable_file.create_dataset("dset", (10, 10), dtype='int64') |
|
arr = np.ones((10, 10), order='F') |
|
with pytest.raises(TypeError): |
|
dset.write_direct(arr) |
|
|
|
|
|
class TestCreateRequire(BaseDataset): |
|
|
|
""" |
|
Feature: Datasets can be created only if they don't exist in the file |
|
""" |
|
|
|
def test_create(self): |
|
""" Create new dataset with no conflicts """ |
|
dset = self.f.require_dataset('foo', (10, 3), 'f') |
|
self.assertIsInstance(dset, Dataset) |
|
self.assertEqual(dset.shape, (10, 3)) |
|
|
|
def test_create_existing(self): |
|
""" require_dataset yields existing dataset """ |
|
dset = self.f.require_dataset('foo', (10, 3), 'f') |
|
dset2 = self.f.require_dataset('foo', (10, 3), 'f') |
|
self.assertEqual(dset, dset2) |
|
|
|
def test_create_1D(self): |
|
""" require_dataset with integer shape yields existing dataset""" |
|
dset = self.f.require_dataset('foo', 10, 'f') |
|
dset2 = self.f.require_dataset('foo', 10, 'f') |
|
self.assertEqual(dset, dset2) |
|
|
|
dset = self.f.require_dataset('bar', (10,), 'f') |
|
dset2 = self.f.require_dataset('bar', 10, 'f') |
|
self.assertEqual(dset, dset2) |
|
|
|
dset = self.f.require_dataset('baz', 10, 'f') |
|
dset2 = self.f.require_dataset(b'baz', (10,), 'f') |
|
self.assertEqual(dset, dset2) |
|
|
|
def test_shape_conflict(self): |
|
""" require_dataset with shape conflict yields TypeError """ |
|
self.f.create_dataset('foo', (10, 3), 'f') |
|
with self.assertRaises(TypeError): |
|
self.f.require_dataset('foo', (10, 4), 'f') |
|
|
|
def test_type_conflict(self): |
|
""" require_dataset with object type conflict yields TypeError """ |
|
self.f.create_group('foo') |
|
with self.assertRaises(TypeError): |
|
self.f.require_dataset('foo', (10, 3), 'f') |
|
|
|
def test_dtype_conflict(self): |
|
""" require_dataset with dtype conflict (strict mode) yields TypeError |
|
""" |
|
dset = self.f.create_dataset('foo', (10, 3), 'f') |
|
with self.assertRaises(TypeError): |
|
self.f.require_dataset('foo', (10, 3), 'S10') |
|
|
|
def test_dtype_exact(self): |
|
""" require_dataset with exactly dtype match """ |
|
|
|
dset = self.f.create_dataset('foo', (10, 3), 'f') |
|
dset2 = self.f.require_dataset('foo', (10, 3), 'f', exact=True) |
|
self.assertEqual(dset, dset2) |
|
|
|
def test_dtype_close(self): |
|
""" require_dataset with convertible type succeeds (non-strict mode) |
|
""" |
|
dset = self.f.create_dataset('foo', (10, 3), 'i4') |
|
dset2 = self.f.require_dataset('foo', (10, 3), 'i2', exact=False) |
|
self.assertEqual(dset, dset2) |
|
self.assertEqual(dset2.dtype, np.dtype('i4')) |
|
|
|
|
|
class TestCreateChunked(BaseDataset): |
|
|
|
""" |
|
Feature: Datasets can be created by manually specifying chunks |
|
""" |
|
|
|
def test_create_chunks(self): |
|
""" Create via chunks tuple """ |
|
dset = self.f.create_dataset('foo', shape=(100,), chunks=(10,)) |
|
self.assertEqual(dset.chunks, (10,)) |
|
|
|
def test_create_chunks_integer(self): |
|
""" Create via chunks integer """ |
|
dset = self.f.create_dataset('foo', shape=(100,), chunks=10) |
|
self.assertEqual(dset.chunks, (10,)) |
|
|
|
def test_chunks_mismatch(self): |
|
""" Illegal chunk size raises ValueError """ |
|
with self.assertRaises(ValueError): |
|
self.f.create_dataset('foo', shape=(100,), chunks=(200,)) |
|
|
|
def test_chunks_false(self): |
|
""" Chunked format required for given storage options """ |
|
with self.assertRaises(ValueError): |
|
self.f.create_dataset('foo', shape=(10,), maxshape=100, chunks=False) |
|
|
|
def test_chunks_scalar(self): |
|
""" Attempting to create chunked scalar dataset raises TypeError """ |
|
with self.assertRaises(TypeError): |
|
self.f.create_dataset('foo', shape=(), chunks=(50,)) |
|
|
|
def test_auto_chunks(self): |
|
""" Auto-chunking of datasets """ |
|
dset = self.f.create_dataset('foo', shape=(20, 100), chunks=True) |
|
self.assertIsInstance(dset.chunks, tuple) |
|
self.assertEqual(len(dset.chunks), 2) |
|
|
|
def test_auto_chunks_abuse(self): |
|
""" Auto-chunking with pathologically large element sizes """ |
|
dset = self.f.create_dataset('foo', shape=(3,), dtype='S100000000', chunks=True) |
|
self.assertEqual(dset.chunks, (1,)) |
|
|
|
def test_scalar_assignment(self): |
|
""" Test scalar assignment of chunked dataset """ |
|
dset = self.f.create_dataset('foo', shape=(3, 50, 50), |
|
dtype=np.int32, chunks=(1, 50, 50)) |
|
|
|
dset[1, :, 40] = 10 |
|
self.assertTrue(np.all(dset[1, :, 40] == 10)) |
|
|
|
|
|
dset[1] = 11 |
|
self.assertTrue(np.all(dset[1] == 11)) |
|
|
|
|
|
dset[0:2] = 12 |
|
self.assertTrue(np.all(dset[0:2] == 12)) |
|
|
|
def test_auto_chunks_no_shape(self): |
|
""" Auto-chunking of empty datasets not allowed""" |
|
with pytest.raises(TypeError, match='Empty') as err: |
|
self.f.create_dataset('foo', dtype='S100', chunks=True) |
|
|
|
with pytest.raises(TypeError, match='Empty') as err: |
|
self.f.create_dataset('foo', dtype='S100', maxshape=20) |
|
|
|
|
|
class TestCreateFillvalue(BaseDataset): |
|
|
|
""" |
|
Feature: Datasets can be created with fill value |
|
""" |
|
|
|
def test_create_fillval(self): |
|
""" Fill value is reflected in dataset contents """ |
|
dset = self.f.create_dataset('foo', (10,), fillvalue=4.0) |
|
self.assertEqual(dset[0], 4.0) |
|
self.assertEqual(dset[7], 4.0) |
|
|
|
def test_property(self): |
|
""" Fill value is recoverable via property """ |
|
dset = self.f.create_dataset('foo', (10,), fillvalue=3.0) |
|
self.assertEqual(dset.fillvalue, 3.0) |
|
self.assertNotIsInstance(dset.fillvalue, np.ndarray) |
|
|
|
def test_property_none(self): |
|
""" .fillvalue property works correctly if not set """ |
|
dset = self.f.create_dataset('foo', (10,)) |
|
self.assertEqual(dset.fillvalue, 0) |
|
|
|
def test_compound(self): |
|
""" Fill value works with compound types """ |
|
dt = np.dtype([('a', 'f4'), ('b', 'i8')]) |
|
v = np.ones((1,), dtype=dt)[0] |
|
dset = self.f.create_dataset('foo', (10,), dtype=dt, fillvalue=v) |
|
self.assertEqual(dset.fillvalue, v) |
|
self.assertAlmostEqual(dset[4], v) |
|
|
|
def test_exc(self): |
|
""" Bogus fill value raises ValueError """ |
|
with self.assertRaises(ValueError): |
|
dset = self.f.create_dataset('foo', (10,), |
|
dtype=[('a', 'i'), ('b', 'f')], fillvalue=42) |
|
|
|
|
|
@pytest.mark.parametrize('dt,expected', [ |
|
(int, 0), |
|
(np.int32, 0), |
|
(np.int64, 0), |
|
(float, 0.0), |
|
(np.float32, 0.0), |
|
(np.float64, 0.0), |
|
(h5py.string_dtype(encoding='utf-8', length=5), b''), |
|
(h5py.string_dtype(encoding='ascii', length=5), b''), |
|
(h5py.string_dtype(encoding='utf-8'), b''), |
|
(h5py.string_dtype(encoding='ascii'), b''), |
|
(h5py.string_dtype(), b''), |
|
|
|
]) |
|
def test_get_unset_fill_value(dt, expected, writable_file): |
|
dset = writable_file.create_dataset('foo', (10,), dtype=dt) |
|
assert dset.fillvalue == expected |
|
|
|
|
|
class TestCreateNamedType(BaseDataset): |
|
|
|
""" |
|
Feature: Datasets created from an existing named type |
|
""" |
|
|
|
def test_named(self): |
|
""" Named type object works and links the dataset to type """ |
|
self.f['type'] = np.dtype('f8') |
|
dset = self.f.create_dataset('x', (100,), dtype=self.f['type']) |
|
self.assertEqual(dset.dtype, np.dtype('f8')) |
|
self.assertEqual(dset.id.get_type(), self.f['type'].id) |
|
self.assertTrue(dset.id.get_type().committed()) |
|
|
|
|
|
@ut.skipIf('gzip' not in h5py.filters.encode, "DEFLATE is not installed") |
|
class TestCreateGzip(BaseDataset): |
|
|
|
""" |
|
Feature: Datasets created with gzip compression |
|
""" |
|
|
|
def test_gzip(self): |
|
""" Create with explicit gzip options """ |
|
dset = self.f.create_dataset('foo', (20, 30), compression='gzip', |
|
compression_opts=9) |
|
self.assertEqual(dset.compression, 'gzip') |
|
self.assertEqual(dset.compression_opts, 9) |
|
|
|
def test_gzip_implicit(self): |
|
""" Create with implicit gzip level (level 4) """ |
|
dset = self.f.create_dataset('foo', (20, 30), compression='gzip') |
|
self.assertEqual(dset.compression, 'gzip') |
|
self.assertEqual(dset.compression_opts, 4) |
|
|
|
def test_gzip_number(self): |
|
""" Create with gzip level by specifying integer """ |
|
dset = self.f.create_dataset('foo', (20, 30), compression=7) |
|
self.assertEqual(dset.compression, 'gzip') |
|
self.assertEqual(dset.compression_opts, 7) |
|
|
|
original_compression_vals = h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS |
|
try: |
|
h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS = tuple() |
|
with self.assertRaises(ValueError): |
|
dset = self.f.create_dataset('foo', (20, 30), compression=7) |
|
finally: |
|
h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS = original_compression_vals |
|
|
|
def test_gzip_exc(self): |
|
""" Illegal gzip level (explicit or implicit) raises ValueError """ |
|
with self.assertRaises((ValueError, RuntimeError)): |
|
self.f.create_dataset('foo', (20, 30), compression=14) |
|
with self.assertRaises(ValueError): |
|
self.f.create_dataset('foo', (20, 30), compression=-4) |
|
with self.assertRaises(ValueError): |
|
self.f.create_dataset('foo', (20, 30), compression='gzip', |
|
compression_opts=14) |
|
|
|
|
|
@ut.skipIf('gzip' not in h5py.filters.encode, "DEFLATE is not installed") |
|
class TestCreateCompressionNumber(BaseDataset): |
|
|
|
""" |
|
Feature: Datasets created with a compression code |
|
""" |
|
|
|
def test_compression_number(self): |
|
""" Create with compression number of gzip (h5py.h5z.FILTER_DEFLATE) and a compression level of 7""" |
|
original_compression_vals = h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS |
|
try: |
|
h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS = tuple() |
|
dset = self.f.create_dataset('foo', (20, 30), compression=h5py.h5z.FILTER_DEFLATE, compression_opts=(7,)) |
|
finally: |
|
h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS = original_compression_vals |
|
|
|
self.assertEqual(dset.compression, 'gzip') |
|
self.assertEqual(dset.compression_opts, 7) |
|
|
|
def test_compression_number_invalid(self): |
|
""" Create with invalid compression numbers """ |
|
with self.assertRaises(ValueError) as e: |
|
self.f.create_dataset('foo', (20, 30), compression=-999) |
|
self.assertIn("Invalid filter", str(e.exception)) |
|
|
|
with self.assertRaises(ValueError) as e: |
|
self.f.create_dataset('foo', (20, 30), compression=100) |
|
self.assertIn("Unknown compression", str(e.exception)) |
|
|
|
original_compression_vals = h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS |
|
try: |
|
h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS = tuple() |
|
|
|
|
|
with self.assertRaises(IndexError): |
|
self.f.create_dataset('foo', (20, 30), compression=h5py.h5z.FILTER_DEFLATE) |
|
finally: |
|
h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS = original_compression_vals |
|
|
|
|
|
@ut.skipIf('lzf' not in h5py.filters.encode, "LZF is not installed") |
|
class TestCreateLZF(BaseDataset): |
|
|
|
""" |
|
Feature: Datasets created with LZF compression |
|
""" |
|
|
|
def test_lzf(self): |
|
""" Create with explicit lzf """ |
|
dset = self.f.create_dataset('foo', (20, 30), compression='lzf') |
|
self.assertEqual(dset.compression, 'lzf') |
|
self.assertEqual(dset.compression_opts, None) |
|
|
|
testdata = np.arange(100) |
|
dset = self.f.create_dataset('bar', data=testdata, compression='lzf') |
|
self.assertEqual(dset.compression, 'lzf') |
|
self.assertEqual(dset.compression_opts, None) |
|
|
|
self.f.flush() |
|
|
|
readdata = self.f['bar'][()] |
|
self.assertArrayEqual(readdata, testdata) |
|
|
|
def test_lzf_exc(self): |
|
""" Giving lzf options raises ValueError """ |
|
with self.assertRaises(ValueError): |
|
self.f.create_dataset('foo', (20, 30), compression='lzf', |
|
compression_opts=4) |
|
|
|
|
|
@ut.skipIf('szip' not in h5py.filters.encode, "SZIP is not installed") |
|
class TestCreateSZIP(BaseDataset): |
|
|
|
""" |
|
Feature: Datasets created with LZF compression |
|
""" |
|
|
|
def test_szip(self): |
|
""" Create with explicit szip """ |
|
dset = self.f.create_dataset('foo', (20, 30), compression='szip', |
|
compression_opts=('ec', 16)) |
|
|
|
|
|
@ut.skipIf('shuffle' not in h5py.filters.encode, "SHUFFLE is not installed") |
|
class TestCreateShuffle(BaseDataset): |
|
|
|
""" |
|
Feature: Datasets can use shuffling filter |
|
""" |
|
|
|
def test_shuffle(self): |
|
""" Enable shuffle filter """ |
|
dset = self.f.create_dataset('foo', (20, 30), shuffle=True) |
|
self.assertTrue(dset.shuffle) |
|
|
|
|
|
@ut.skipIf('fletcher32' not in h5py.filters.encode, "FLETCHER32 is not installed") |
|
class TestCreateFletcher32(BaseDataset): |
|
""" |
|
Feature: Datasets can use the fletcher32 filter |
|
""" |
|
|
|
def test_fletcher32(self): |
|
""" Enable fletcher32 filter """ |
|
dset = self.f.create_dataset('foo', (20, 30), fletcher32=True) |
|
self.assertTrue(dset.fletcher32) |
|
|
|
|
|
@ut.skipIf('scaleoffset' not in h5py.filters.encode, "SCALEOFFSET is not installed") |
|
class TestCreateScaleOffset(BaseDataset): |
|
""" |
|
Feature: Datasets can use the scale/offset filter |
|
""" |
|
|
|
def test_float_fails_without_options(self): |
|
""" Ensure that a scale factor is required for scaleoffset compression of floating point data """ |
|
|
|
with self.assertRaises(ValueError): |
|
dset = self.f.create_dataset('foo', (20, 30), dtype=float, scaleoffset=True) |
|
|
|
def test_non_integer(self): |
|
""" Check when scaleoffset is negetive""" |
|
|
|
with self.assertRaises(ValueError): |
|
dset = self.f.create_dataset('foo', (20, 30), dtype=float, scaleoffset=-0.1) |
|
|
|
def test_unsupport_dtype(self): |
|
""" Check when dtype is unsupported type""" |
|
|
|
with self.assertRaises(TypeError): |
|
dset = self.f.create_dataset('foo', (20, 30), dtype=bool, scaleoffset=True) |
|
|
|
def test_float(self): |
|
""" Scaleoffset filter works for floating point data """ |
|
|
|
scalefac = 4 |
|
shape = (100, 300) |
|
range = 20 * 10 ** scalefac |
|
testdata = (np.random.rand(*shape) - 0.5) * range |
|
|
|
dset = self.f.create_dataset('foo', shape, dtype=float, scaleoffset=scalefac) |
|
|
|
|
|
assert dset.scaleoffset is not None |
|
|
|
|
|
dset[...] = testdata |
|
filename = self.f.filename |
|
self.f.close() |
|
self.f = h5py.File(filename, 'r') |
|
readdata = self.f['foo'][...] |
|
|
|
|
|
self.assertArrayEqual(readdata, testdata, precision=10 ** (-scalefac)) |
|
|
|
|
|
assert not (readdata == testdata).all() |
|
|
|
def test_int(self): |
|
""" Scaleoffset filter works for integer data with default precision """ |
|
|
|
nbits = 12 |
|
shape = (100, 300) |
|
testdata = np.random.randint(0, 2 ** nbits - 1, size=shape) |
|
|
|
|
|
dset = self.f.create_dataset('foo', shape, dtype=int, scaleoffset=True) |
|
|
|
|
|
assert dset.scaleoffset is not None |
|
|
|
|
|
dset[...] = testdata |
|
filename = self.f.filename |
|
self.f.close() |
|
self.f = h5py.File(filename, 'r') |
|
readdata = self.f['foo'][...] |
|
self.assertArrayEqual(readdata, testdata) |
|
|
|
def test_int_with_minbits(self): |
|
""" Scaleoffset filter works for integer data with specified precision """ |
|
|
|
nbits = 12 |
|
shape = (100, 300) |
|
testdata = np.random.randint(0, 2 ** nbits, size=shape) |
|
|
|
dset = self.f.create_dataset('foo', shape, dtype=int, scaleoffset=nbits) |
|
|
|
|
|
self.assertTrue(dset.scaleoffset == 12) |
|
|
|
|
|
dset[...] = testdata |
|
filename = self.f.filename |
|
self.f.close() |
|
self.f = h5py.File(filename, 'r') |
|
readdata = self.f['foo'][...] |
|
self.assertArrayEqual(readdata, testdata) |
|
|
|
def test_int_with_minbits_lossy(self): |
|
""" Scaleoffset filter works for integer data with specified precision """ |
|
|
|
nbits = 12 |
|
shape = (100, 300) |
|
testdata = np.random.randint(0, 2 ** (nbits + 1) - 1, size=shape) |
|
|
|
dset = self.f.create_dataset('foo', shape, dtype=int, scaleoffset=nbits) |
|
|
|
|
|
self.assertTrue(dset.scaleoffset == 12) |
|
|
|
|
|
dset[...] = testdata |
|
filename = self.f.filename |
|
self.f.close() |
|
self.f = h5py.File(filename, 'r') |
|
readdata = self.f['foo'][...] |
|
|
|
|
|
assert not (readdata == testdata).all() |
|
|
|
|
|
class TestExternal(BaseDataset): |
|
""" |
|
Feature: Datasets with the external storage property |
|
""" |
|
def test_contents(self): |
|
""" Create and access an external dataset """ |
|
|
|
shape = (6, 100) |
|
testdata = np.random.random(shape) |
|
|
|
|
|
ext_file = self.mktemp() |
|
external = [(ext_file, 0, h5f.UNLIMITED)] |
|
|
|
dset = self.f.create_dataset('foo', shape, dtype=testdata.dtype, external=external, efile_prefix="${ORIGIN}") |
|
dset[...] = testdata |
|
|
|
assert dset.external is not None |
|
|
|
|
|
with open(ext_file, 'rb') as fid: |
|
contents = fid.read() |
|
assert contents == testdata.tobytes() |
|
|
|
|
|
if h5py.version.hdf5_version_tuple >= (1,10,0): |
|
efile_prefix = pathlib.Path(dset.id.get_access_plist().get_efile_prefix().decode()).as_posix() |
|
parent = pathlib.Path(self.f.filename).parent.as_posix() |
|
assert efile_prefix == parent |
|
|
|
def test_contents_efile_prefix(self): |
|
""" Create and access an external dataset using an efile_prefix""" |
|
|
|
shape = (6, 100) |
|
testdata = np.random.random(shape) |
|
|
|
|
|
ext_file = self.mktemp() |
|
|
|
external = [(os.path.basename(ext_file), 0, h5f.UNLIMITED)] |
|
dset = self.f.create_dataset('foo', shape, dtype=testdata.dtype, external=external, efile_prefix=os.path.dirname(ext_file)) |
|
dset[...] = testdata |
|
|
|
assert dset.external is not None |
|
|
|
|
|
with open(ext_file, 'rb') as fid: |
|
contents = fid.read() |
|
assert contents == testdata.tobytes() |
|
|
|
|
|
if h5py.version.hdf5_version_tuple >= (1,10,0): |
|
efile_prefix = pathlib.Path(dset.id.get_access_plist().get_efile_prefix().decode()).as_posix() |
|
parent = pathlib.Path(ext_file).parent.as_posix() |
|
assert efile_prefix == parent |
|
|
|
dset2 = self.f.require_dataset('foo', shape, testdata.dtype, efile_prefix=os.path.dirname(ext_file)) |
|
assert dset2.external is not None |
|
dset2[()] == testdata |
|
|
|
def test_name_str(self): |
|
""" External argument may be a file name str only """ |
|
|
|
self.f.create_dataset('foo', (6, 100), external=self.mktemp()) |
|
|
|
def test_name_path(self): |
|
""" External argument may be a file name path only """ |
|
|
|
self.f.create_dataset('foo', (6, 100), |
|
external=pathlib.Path(self.mktemp())) |
|
|
|
def test_iter_multi(self): |
|
""" External argument may be an iterable of multiple tuples """ |
|
|
|
ext_file = self.mktemp() |
|
N = 100 |
|
external = iter((ext_file, x * 1000, 1000) for x in range(N)) |
|
dset = self.f.create_dataset('poo', (6, 100), external=external) |
|
assert len(dset.external) == N |
|
|
|
def test_invalid(self): |
|
""" Test with invalid external lists """ |
|
|
|
shape = (6, 100) |
|
ext_file = self.mktemp() |
|
|
|
for exc_type, external in [ |
|
(TypeError, [ext_file]), |
|
(TypeError, [ext_file, 0]), |
|
(TypeError, [ext_file, 0, h5f.UNLIMITED]), |
|
(ValueError, [(ext_file,)]), |
|
(ValueError, [(ext_file, 0)]), |
|
(ValueError, [(ext_file, 0, h5f.UNLIMITED, 0)]), |
|
(TypeError, [(ext_file, 0, "h5f.UNLIMITED")]), |
|
]: |
|
with self.assertRaises(exc_type): |
|
self.f.create_dataset('foo', shape, external=external) |
|
|
|
|
|
class TestAutoCreate(BaseDataset): |
|
|
|
""" |
|
Feature: Datasets auto-created from data produce the correct types |
|
""" |
|
def assert_string_type(self, ds, cset, variable=True): |
|
tid = ds.id.get_type() |
|
self.assertEqual(type(tid), h5py.h5t.TypeStringID) |
|
self.assertEqual(tid.get_cset(), cset) |
|
if variable: |
|
assert tid.is_variable_str() |
|
|
|
def test_vlen_bytes(self): |
|
"""Assigning byte strings produces a vlen string ASCII dataset """ |
|
self.f['x'] = b"Hello there" |
|
self.assert_string_type(self.f['x'], h5py.h5t.CSET_ASCII) |
|
|
|
self.f['y'] = [b"a", b"bc"] |
|
self.assert_string_type(self.f['y'], h5py.h5t.CSET_ASCII) |
|
|
|
self.f['z'] = np.array([b"a", b"bc"], dtype=np.object_) |
|
self.assert_string_type(self.f['z'], h5py.h5t.CSET_ASCII) |
|
|
|
def test_vlen_unicode(self): |
|
"""Assigning unicode strings produces a vlen string UTF-8 dataset """ |
|
self.f['x'] = "Hello there" + chr(0x2034) |
|
self.assert_string_type(self.f['x'], h5py.h5t.CSET_UTF8) |
|
|
|
self.f['y'] = ["a", "bc"] |
|
self.assert_string_type(self.f['y'], h5py.h5t.CSET_UTF8) |
|
|
|
|
|
self.f['z'] = np.array([["a", "bc"]], dtype=np.object_) |
|
self.assert_string_type(self.f['z'], h5py.h5t.CSET_UTF8) |
|
|
|
def test_string_fixed(self): |
|
""" Assignment of fixed-length byte string produces a fixed-length |
|
ascii dataset """ |
|
self.f['x'] = np.string_("Hello there") |
|
ds = self.f['x'] |
|
self.assert_string_type(ds, h5py.h5t.CSET_ASCII, variable=False) |
|
self.assertEqual(ds.id.get_type().get_size(), 11) |
|
|
|
|
|
class TestCreateLike(BaseDataset): |
|
def test_no_chunks(self): |
|
self.f['lol'] = np.arange(25).reshape(5, 5) |
|
self.f.create_dataset_like('like_lol', self.f['lol']) |
|
dslike = self.f['like_lol'] |
|
self.assertEqual(dslike.shape, (5, 5)) |
|
self.assertIs(dslike.chunks, None) |
|
|
|
def test_track_times(self): |
|
orig = self.f.create_dataset('honda', data=np.arange(12), |
|
track_times=True) |
|
self.assertNotEqual(0, h5py.h5g.get_objinfo(orig._id).mtime) |
|
similar = self.f.create_dataset_like('hyundai', orig) |
|
self.assertNotEqual(0, h5py.h5g.get_objinfo(similar._id).mtime) |
|
|
|
orig = self.f.create_dataset('ibm', data=np.arange(12), |
|
track_times=False) |
|
self.assertEqual(0, h5py.h5g.get_objinfo(orig._id).mtime) |
|
similar = self.f.create_dataset_like('lenovo', orig) |
|
self.assertEqual(0, h5py.h5g.get_objinfo(similar._id).mtime) |
|
|
|
def test_maxshape(self): |
|
""" Test when other.maxshape != other.shape """ |
|
|
|
other = self.f.create_dataset('other', (10,), maxshape=20) |
|
similar = self.f.create_dataset_like('sim', other) |
|
self.assertEqual(similar.shape, (10,)) |
|
self.assertEqual(similar.maxshape, (20,)) |
|
|
|
class TestChunkIterator(BaseDataset): |
|
def test_no_chunks(self): |
|
dset = self.f.create_dataset("foo", ()) |
|
with self.assertRaises(TypeError): |
|
dset.iter_chunks() |
|
|
|
def test_1d(self): |
|
dset = self.f.create_dataset("foo", (100,), chunks=(32,)) |
|
expected = ((slice(0,32,1),), (slice(32,64,1),), (slice(64,96,1),), |
|
(slice(96,100,1),)) |
|
self.assertEqual(list(dset.iter_chunks()), list(expected)) |
|
expected = ((slice(50,64,1),), (slice(64,96,1),), (slice(96,97,1),)) |
|
self.assertEqual(list(dset.iter_chunks(np.s_[50:97])), list(expected)) |
|
|
|
def test_2d(self): |
|
dset = self.f.create_dataset("foo", (100,100), chunks=(32,64)) |
|
expected = ((slice(0, 32, 1), slice(0, 64, 1)), (slice(0, 32, 1), |
|
slice(64, 100, 1)), (slice(32, 64, 1), slice(0, 64, 1)), |
|
(slice(32, 64, 1), slice(64, 100, 1)), (slice(64, 96, 1), |
|
slice(0, 64, 1)), (slice(64, 96, 1), slice(64, 100, 1)), |
|
(slice(96, 100, 1), slice(0, 64, 1)), (slice(96, 100, 1), |
|
slice(64, 100, 1))) |
|
self.assertEqual(list(dset.iter_chunks()), list(expected)) |
|
|
|
expected = ((slice(48, 52, 1), slice(40, 50, 1)),) |
|
self.assertEqual(list(dset.iter_chunks(np.s_[48:52,40:50])), list(expected)) |
|
|
|
|
|
class TestResize(BaseDataset): |
|
|
|
""" |
|
Feature: Datasets created with "maxshape" may be resized |
|
""" |
|
|
|
def test_create(self): |
|
""" Create dataset with "maxshape" """ |
|
dset = self.f.create_dataset('foo', (20, 30), maxshape=(20, 60)) |
|
self.assertIsNot(dset.chunks, None) |
|
self.assertEqual(dset.maxshape, (20, 60)) |
|
|
|
def test_create_1D(self): |
|
""" Create dataset with "maxshape" using integer maxshape""" |
|
dset = self.f.create_dataset('foo', (20,), maxshape=20) |
|
self.assertIsNot(dset.chunks, None) |
|
self.assertEqual(dset.maxshape, (20,)) |
|
|
|
dset = self.f.create_dataset('bar', 20, maxshape=20) |
|
self.assertEqual(dset.maxshape, (20,)) |
|
|
|
def test_resize(self): |
|
""" Datasets may be resized up to maxshape """ |
|
dset = self.f.create_dataset('foo', (20, 30), maxshape=(20, 60)) |
|
self.assertEqual(dset.shape, (20, 30)) |
|
dset.resize((20, 50)) |
|
self.assertEqual(dset.shape, (20, 50)) |
|
dset.resize((20, 60)) |
|
self.assertEqual(dset.shape, (20, 60)) |
|
|
|
def test_resize_1D(self): |
|
""" Datasets may be resized up to maxshape using integer maxshape""" |
|
dset = self.f.create_dataset('foo', 20, maxshape=40) |
|
self.assertEqual(dset.shape, (20,)) |
|
dset.resize((30,)) |
|
self.assertEqual(dset.shape, (30,)) |
|
|
|
def test_resize_over(self): |
|
""" Resizing past maxshape triggers an exception """ |
|
dset = self.f.create_dataset('foo', (20, 30), maxshape=(20, 60)) |
|
with self.assertRaises(Exception): |
|
dset.resize((20, 70)) |
|
|
|
def test_resize_nonchunked(self): |
|
""" Resizing non-chunked dataset raises TypeError """ |
|
dset = self.f.create_dataset("foo", (20, 30)) |
|
with self.assertRaises(TypeError): |
|
dset.resize((20, 60)) |
|
|
|
def test_resize_axis(self): |
|
""" Resize specified axis """ |
|
dset = self.f.create_dataset('foo', (20, 30), maxshape=(20, 60)) |
|
dset.resize(50, axis=1) |
|
self.assertEqual(dset.shape, (20, 50)) |
|
|
|
def test_axis_exc(self): |
|
""" Illegal axis raises ValueError """ |
|
dset = self.f.create_dataset('foo', (20, 30), maxshape=(20, 60)) |
|
with self.assertRaises(ValueError): |
|
dset.resize(50, axis=2) |
|
|
|
def test_zero_dim(self): |
|
""" Allow zero-length initial dims for unlimited axes (issue 111) """ |
|
dset = self.f.create_dataset('foo', (15, 0), maxshape=(15, None)) |
|
self.assertEqual(dset.shape, (15, 0)) |
|
self.assertEqual(dset.maxshape, (15, None)) |
|
|
|
|
|
class TestDtype(BaseDataset): |
|
|
|
""" |
|
Feature: Dataset dtype is available as .dtype property |
|
""" |
|
|
|
def test_dtype(self): |
|
""" Retrieve dtype from dataset """ |
|
dset = self.f.create_dataset('foo', (5,), '|S10') |
|
self.assertEqual(dset.dtype, np.dtype('|S10')) |
|
|
|
def test_dtype_complex32(self): |
|
""" Retrieve dtype from complex float16 dataset (gh-2156) """ |
|
|
|
complex32 = np.dtype([('r', np.float16), ('i', np.float16)]) |
|
dset = self.f.create_dataset('foo', (5,), complex32) |
|
self.assertEqual(dset.dtype, complex32) |
|
|
|
|
|
class TestLen(BaseDataset): |
|
|
|
""" |
|
Feature: Size of first axis is available via Python's len |
|
""" |
|
|
|
def test_len(self): |
|
""" Python len() (under 32 bits) """ |
|
dset = self.f.create_dataset('foo', (312, 15)) |
|
self.assertEqual(len(dset), 312) |
|
|
|
def test_len_big(self): |
|
""" Python len() vs Dataset.len() """ |
|
dset = self.f.create_dataset('foo', (2 ** 33, 15)) |
|
self.assertEqual(dset.shape, (2 ** 33, 15)) |
|
if sys.maxsize == 2 ** 31 - 1: |
|
with self.assertRaises(OverflowError): |
|
len(dset) |
|
else: |
|
self.assertEqual(len(dset), 2 ** 33) |
|
self.assertEqual(dset.len(), 2 ** 33) |
|
|
|
|
|
class TestIter(BaseDataset): |
|
|
|
""" |
|
Feature: Iterating over a dataset yields rows |
|
""" |
|
|
|
def test_iter(self): |
|
""" Iterating over a dataset yields rows """ |
|
data = np.arange(30, dtype='f').reshape((10, 3)) |
|
dset = self.f.create_dataset('foo', data=data) |
|
for x, y in zip(dset, data): |
|
self.assertEqual(len(x), 3) |
|
self.assertArrayEqual(x, y) |
|
|
|
def test_iter_scalar(self): |
|
""" Iterating over scalar dataset raises TypeError """ |
|
dset = self.f.create_dataset('foo', shape=()) |
|
with self.assertRaises(TypeError): |
|
[x for x in dset] |
|
|
|
|
|
class TestStrings(BaseDataset): |
|
|
|
""" |
|
Feature: Datasets created with vlen and fixed datatypes correctly |
|
translate to and from HDF5 |
|
""" |
|
|
|
def test_vlen_bytes(self): |
|
""" Vlen bytes dataset maps to vlen ascii in the file """ |
|
dt = h5py.string_dtype(encoding='ascii') |
|
ds = self.f.create_dataset('x', (100,), dtype=dt) |
|
tid = ds.id.get_type() |
|
self.assertEqual(type(tid), h5py.h5t.TypeStringID) |
|
self.assertEqual(tid.get_cset(), h5py.h5t.CSET_ASCII) |
|
string_info = h5py.check_string_dtype(ds.dtype) |
|
self.assertEqual(string_info.encoding, 'ascii') |
|
|
|
def test_vlen_bytes_fillvalue(self): |
|
""" Vlen bytes dataset handles fillvalue """ |
|
dt = h5py.string_dtype(encoding='ascii') |
|
fill_value = b'bar' |
|
ds = self.f.create_dataset('x', (100,), dtype=dt, fillvalue=fill_value) |
|
self.assertEqual(self.f['x'][0], fill_value) |
|
self.assertEqual(self.f['x'].asstr()[0], fill_value.decode()) |
|
self.assertEqual(self.f['x'].fillvalue, fill_value) |
|
|
|
def test_vlen_unicode(self): |
|
""" Vlen unicode dataset maps to vlen utf-8 in the file """ |
|
dt = h5py.string_dtype() |
|
ds = self.f.create_dataset('x', (100,), dtype=dt) |
|
tid = ds.id.get_type() |
|
self.assertEqual(type(tid), h5py.h5t.TypeStringID) |
|
self.assertEqual(tid.get_cset(), h5py.h5t.CSET_UTF8) |
|
string_info = h5py.check_string_dtype(ds.dtype) |
|
self.assertEqual(string_info.encoding, 'utf-8') |
|
|
|
def test_vlen_unicode_fillvalue(self): |
|
""" Vlen unicode dataset handles fillvalue """ |
|
dt = h5py.string_dtype() |
|
fill_value = 'bár' |
|
ds = self.f.create_dataset('x', (100,), dtype=dt, fillvalue=fill_value) |
|
self.assertEqual(self.f['x'][0], fill_value.encode("utf-8")) |
|
self.assertEqual(self.f['x'].asstr()[0], fill_value) |
|
self.assertEqual(self.f['x'].fillvalue, fill_value.encode("utf-8")) |
|
|
|
def test_fixed_ascii(self): |
|
""" Fixed-length bytes dataset maps to fixed-length ascii in the file |
|
""" |
|
dt = np.dtype("|S10") |
|
ds = self.f.create_dataset('x', (100,), dtype=dt) |
|
tid = ds.id.get_type() |
|
self.assertEqual(type(tid), h5py.h5t.TypeStringID) |
|
self.assertFalse(tid.is_variable_str()) |
|
self.assertEqual(tid.get_size(), 10) |
|
self.assertEqual(tid.get_cset(), h5py.h5t.CSET_ASCII) |
|
string_info = h5py.check_string_dtype(ds.dtype) |
|
self.assertEqual(string_info.encoding, 'ascii') |
|
self.assertEqual(string_info.length, 10) |
|
|
|
def test_fixed_bytes_fillvalue(self): |
|
""" Vlen bytes dataset handles fillvalue """ |
|
dt = h5py.string_dtype(encoding='ascii', length=10) |
|
fill_value = b'bar' |
|
ds = self.f.create_dataset('x', (100,), dtype=dt, fillvalue=fill_value) |
|
self.assertEqual(self.f['x'][0], fill_value) |
|
self.assertEqual(self.f['x'].asstr()[0], fill_value.decode()) |
|
self.assertEqual(self.f['x'].fillvalue, fill_value) |
|
|
|
def test_fixed_utf8(self): |
|
dt = h5py.string_dtype(encoding='utf-8', length=5) |
|
ds = self.f.create_dataset('x', (100,), dtype=dt) |
|
tid = ds.id.get_type() |
|
self.assertEqual(tid.get_cset(), h5py.h5t.CSET_UTF8) |
|
s = 'cù' |
|
ds[0] = s.encode('utf-8') |
|
ds[1] = s |
|
ds[2:4] = [s, s] |
|
ds[4:6] = np.array([s, s], dtype=object) |
|
ds[6:8] = np.array([s.encode('utf-8')] * 2, dtype=dt) |
|
with self.assertRaises(TypeError): |
|
ds[8:10] = np.array([s, s], dtype='U') |
|
|
|
np.testing.assert_array_equal(ds[:8], np.array([s.encode('utf-8')] * 8, dtype='S')) |
|
|
|
def test_fixed_utf_8_fillvalue(self): |
|
""" Vlen unicode dataset handles fillvalue """ |
|
dt = h5py.string_dtype(encoding='utf-8', length=10) |
|
fill_value = 'bár'.encode("utf-8") |
|
ds = self.f.create_dataset('x', (100,), dtype=dt, fillvalue=fill_value) |
|
self.assertEqual(self.f['x'][0], fill_value) |
|
self.assertEqual(self.f['x'].asstr()[0], fill_value.decode("utf-8")) |
|
self.assertEqual(self.f['x'].fillvalue, fill_value) |
|
|
|
def test_fixed_unicode(self): |
|
""" Fixed-length unicode datasets are unsupported (raise TypeError) """ |
|
dt = np.dtype("|U10") |
|
with self.assertRaises(TypeError): |
|
ds = self.f.create_dataset('x', (100,), dtype=dt) |
|
|
|
def test_roundtrip_vlen_bytes(self): |
|
""" writing and reading to vlen bytes dataset preserves type and content |
|
""" |
|
dt = h5py.string_dtype(encoding='ascii') |
|
ds = self.f.create_dataset('x', (100,), dtype=dt) |
|
data = b"Hello\xef" |
|
ds[0] = data |
|
out = ds[0] |
|
self.assertEqual(type(out), bytes) |
|
self.assertEqual(out, data) |
|
|
|
def test_roundtrip_fixed_bytes(self): |
|
""" Writing to and reading from fixed-length bytes dataset preserves |
|
type and content """ |
|
dt = np.dtype("|S10") |
|
ds = self.f.create_dataset('x', (100,), dtype=dt) |
|
data = b"Hello\xef" |
|
ds[0] = data |
|
out = ds[0] |
|
self.assertEqual(type(out), np.string_) |
|
self.assertEqual(out, data) |
|
|
|
def test_retrieve_vlen_unicode(self): |
|
dt = h5py.string_dtype() |
|
ds = self.f.create_dataset('x', (10,), dtype=dt) |
|
data = "fàilte" |
|
ds[0] = data |
|
self.assertIsInstance(ds[0], bytes) |
|
out = ds.asstr()[0] |
|
self.assertIsInstance(out, str) |
|
self.assertEqual(out, data) |
|
|
|
def test_asstr(self): |
|
ds = self.f.create_dataset('x', (10,), dtype=h5py.string_dtype()) |
|
data = "fàilte" |
|
ds[0] = data |
|
|
|
strwrap1 = ds.asstr('ascii') |
|
with self.assertRaises(UnicodeDecodeError): |
|
out = strwrap1[0] |
|
|
|
|
|
self.assertEqual(ds.asstr('ascii', 'ignore')[0], 'filte') |
|
|
|
|
|
self.assertNotEqual(ds.asstr('latin-1')[0], data) |
|
|
|
|
|
self.assertEqual(10, len(ds.asstr())) |
|
|
|
|
|
|
|
np.testing.assert_array_equal( |
|
ds.asstr()[:1], np.array([data], dtype=object) |
|
) |
|
|
|
def test_asstr_fixed(self): |
|
dt = h5py.string_dtype(length=5) |
|
ds = self.f.create_dataset('x', (10,), dtype=dt) |
|
data = 'cù' |
|
ds[0] = np.array(data.encode('utf-8'), dtype=dt) |
|
|
|
self.assertIsInstance(ds[0], np.bytes_) |
|
out = ds.asstr()[0] |
|
self.assertIsInstance(out, str) |
|
self.assertEqual(out, data) |
|
|
|
|
|
self.assertEqual(ds.asstr('ascii', 'ignore')[0], 'c') |
|
|
|
|
|
self.assertNotEqual(ds.asstr('latin-1')[0], data) |
|
|
|
|
|
np.testing.assert_array_equal( |
|
ds.asstr()[:1], np.array([data], dtype=object) |
|
) |
|
|
|
def test_unicode_write_error(self): |
|
"""Encoding error when writing a non-ASCII string to an ASCII vlen dataset""" |
|
dt = h5py.string_dtype('ascii') |
|
ds = self.f.create_dataset('x', (100,), dtype=dt) |
|
data = "fàilte" |
|
with self.assertRaises(UnicodeEncodeError): |
|
ds[0] = data |
|
|
|
def test_unicode_write_bytes(self): |
|
""" Writing valid utf-8 byte strings to a unicode vlen dataset is OK |
|
""" |
|
dt = h5py.string_dtype() |
|
ds = self.f.create_dataset('x', (100,), dtype=dt) |
|
data = (u"Hello there" + chr(0x2034)).encode('utf8') |
|
ds[0] = data |
|
out = ds[0] |
|
self.assertEqual(type(out), bytes) |
|
self.assertEqual(out, data) |
|
|
|
def test_vlen_bytes_write_ascii_str(self): |
|
""" Writing an ascii str to ascii vlen dataset is OK |
|
""" |
|
dt = h5py.string_dtype('ascii') |
|
ds = self.f.create_dataset('x', (100,), dtype=dt) |
|
data = "ASCII string" |
|
ds[0] = data |
|
out = ds[0] |
|
self.assertEqual(type(out), bytes) |
|
self.assertEqual(out, data.encode('ascii')) |
|
|
|
|
|
class TestCompound(BaseDataset): |
|
|
|
""" |
|
Feature: Compound types correctly round-trip |
|
""" |
|
|
|
def test_rt(self): |
|
""" Compound types are read back in correct order (issue 236)""" |
|
|
|
dt = np.dtype([ ('weight', np.float64), |
|
('cputime', np.float64), |
|
('walltime', np.float64), |
|
('parents_offset', np.uint32), |
|
('n_parents', np.uint32), |
|
('status', np.uint8), |
|
('endpoint_type', np.uint8), ]) |
|
|
|
testdata = np.ndarray((16,), dtype=dt) |
|
for key in dt.fields: |
|
testdata[key] = np.random.random((16,)) * 100 |
|
|
|
self.f['test'] = testdata |
|
outdata = self.f['test'][...] |
|
self.assertTrue(np.all(outdata == testdata)) |
|
self.assertEqual(outdata.dtype, testdata.dtype) |
|
|
|
def test_assign(self): |
|
dt = np.dtype([ ('weight', (np.float64, 3)), |
|
('endpoint_type', np.uint8), ]) |
|
|
|
testdata = np.ndarray((16,), dtype=dt) |
|
for key in dt.fields: |
|
testdata[key] = np.random.random(size=testdata[key].shape) * 100 |
|
|
|
ds = self.f.create_dataset('test', (16,), dtype=dt) |
|
for key in dt.fields: |
|
ds[key] = testdata[key] |
|
|
|
outdata = self.f['test'][...] |
|
|
|
self.assertTrue(np.all(outdata == testdata)) |
|
self.assertEqual(outdata.dtype, testdata.dtype) |
|
|
|
def test_fields(self): |
|
dt = np.dtype([ |
|
('x', np.float64), |
|
('y', np.float64), |
|
('z', np.float64), |
|
]) |
|
|
|
testdata = np.ndarray((16,), dtype=dt) |
|
for key in dt.fields: |
|
testdata[key] = np.random.random((16,)) * 100 |
|
|
|
self.f['test'] = testdata |
|
|
|
|
|
np.testing.assert_array_equal( |
|
self.f['test'].fields(['x', 'y'])[:], testdata[['x', 'y']] |
|
) |
|
|
|
np.testing.assert_array_equal( |
|
self.f['test'].fields('x')[:], testdata['x'] |
|
) |
|
|
|
np.testing.assert_array_equal( |
|
np.asarray(self.f['test'].fields(['x', 'y'])), testdata[['x', 'y']] |
|
) |
|
|
|
dt_int = np.dtype([('x', np.int32)]) |
|
np.testing.assert_array_equal( |
|
np.asarray(self.f['test'].fields(['x']), dtype=dt_int), |
|
testdata[['x']].astype(dt_int) |
|
) |
|
|
|
|
|
assert len(self.f['test'].fields('x')) == 16 |
|
|
|
|
|
class TestSubarray(BaseDataset): |
|
def test_write_list(self): |
|
ds = self.f.create_dataset("a", (1,), dtype="3int8") |
|
ds[0] = [1, 2, 3] |
|
np.testing.assert_array_equal(ds[:], [[1, 2, 3]]) |
|
|
|
ds[:] = [[4, 5, 6]] |
|
np.testing.assert_array_equal(ds[:], [[4, 5, 6]]) |
|
|
|
def test_write_array(self): |
|
ds = self.f.create_dataset("a", (1,), dtype="3int8") |
|
ds[0] = np.array([1, 2, 3]) |
|
np.testing.assert_array_equal(ds[:], [[1, 2, 3]]) |
|
|
|
ds[:] = np.array([[4, 5, 6]]) |
|
np.testing.assert_array_equal(ds[:], [[4, 5, 6]]) |
|
|
|
|
|
class TestEnum(BaseDataset): |
|
|
|
""" |
|
Feature: Enum datatype info is preserved, read/write as integer |
|
""" |
|
|
|
EDICT = {'RED': 0, 'GREEN': 1, 'BLUE': 42} |
|
|
|
def test_create(self): |
|
""" Enum datasets can be created and type correctly round-trips """ |
|
dt = h5py.enum_dtype(self.EDICT, basetype='i') |
|
ds = self.f.create_dataset('x', (100, 100), dtype=dt) |
|
dt2 = ds.dtype |
|
dict2 = h5py.check_enum_dtype(dt2) |
|
self.assertEqual(dict2, self.EDICT) |
|
|
|
def test_readwrite(self): |
|
""" Enum datasets can be read/written as integers """ |
|
dt = h5py.enum_dtype(self.EDICT, basetype='i4') |
|
ds = self.f.create_dataset('x', (100, 100), dtype=dt) |
|
ds[35, 37] = 42 |
|
ds[1, :] = 1 |
|
self.assertEqual(ds[35, 37], 42) |
|
self.assertArrayEqual(ds[1, :], np.array((1,) * 100, dtype='i4')) |
|
|
|
|
|
class TestFloats(BaseDataset): |
|
|
|
""" |
|
Test support for mini and extended-precision floats |
|
""" |
|
|
|
def _exectest(self, dt): |
|
dset = self.f.create_dataset('x', (100,), dtype=dt) |
|
self.assertEqual(dset.dtype, dt) |
|
data = np.ones((100,), dtype=dt) |
|
dset[...] = data |
|
self.assertArrayEqual(dset[...], data) |
|
|
|
@ut.skipUnless(hasattr(np, 'float16'), "NumPy float16 support required") |
|
def test_mini(self): |
|
""" Mini-floats round trip """ |
|
self._exectest(np.dtype('float16')) |
|
|
|
|
|
def test_mini_mapping(self): |
|
""" Test mapping for float16 """ |
|
if hasattr(np, 'float16'): |
|
self.assertEqual(h5t.IEEE_F16LE.dtype, np.dtype('<f2')) |
|
else: |
|
self.assertEqual(h5t.IEEE_F16LE.dtype, np.dtype('<f4')) |
|
|
|
|
|
class TestTrackTimes(BaseDataset): |
|
|
|
""" |
|
Feature: track_times |
|
""" |
|
|
|
def test_disable_track_times(self): |
|
""" check that when track_times=False, the time stamp=0 (Jan 1, 1970) """ |
|
ds = self.f.create_dataset('foo', (4,), track_times=False) |
|
ds_mtime = h5py.h5g.get_objinfo(ds._id).mtime |
|
self.assertEqual(0, ds_mtime) |
|
|
|
def test_invalid_track_times(self): |
|
""" check that when give track_times an invalid value """ |
|
with self.assertRaises(TypeError): |
|
self.f.create_dataset('foo', (4,), track_times='null') |
|
|
|
|
|
class TestZeroShape(BaseDataset): |
|
|
|
""" |
|
Features of datasets with (0,)-shape axes |
|
""" |
|
|
|
def test_array_conversion(self): |
|
""" Empty datasets can be converted to NumPy arrays """ |
|
ds = self.f.create_dataset('x', 0, maxshape=None) |
|
self.assertEqual(ds.shape, np.array(ds).shape) |
|
|
|
ds = self.f.create_dataset('y', (0,), maxshape=(None,)) |
|
self.assertEqual(ds.shape, np.array(ds).shape) |
|
|
|
ds = self.f.create_dataset('z', (0, 0), maxshape=(None, None)) |
|
self.assertEqual(ds.shape, np.array(ds).shape) |
|
|
|
def test_reading(self): |
|
""" Slicing into empty datasets works correctly """ |
|
dt = [('a', 'f'), ('b', 'i')] |
|
ds = self.f.create_dataset('x', (0,), dtype=dt, maxshape=(None,)) |
|
arr = np.empty((0,), dtype=dt) |
|
|
|
self.assertEqual(ds[...].shape, arr.shape) |
|
self.assertEqual(ds[...].dtype, arr.dtype) |
|
self.assertEqual(ds[()].shape, arr.shape) |
|
self.assertEqual(ds[()].dtype, arr.dtype) |
|
|
|
|
|
empty_regionref_xfail = pytest.mark.xfail( |
|
h5py.version.hdf5_version_tuple == (1, 10, 6), |
|
reason="Issue with empty region refs in HDF5 1.10.6", |
|
) |
|
|
|
class TestRegionRefs(BaseDataset): |
|
|
|
""" |
|
Various features of region references |
|
""" |
|
|
|
def setUp(self): |
|
BaseDataset.setUp(self) |
|
self.data = np.arange(100 * 100).reshape((100, 100)) |
|
self.dset = self.f.create_dataset('x', data=self.data) |
|
self.dset[...] = self.data |
|
|
|
def test_create_ref(self): |
|
""" Region references can be used as slicing arguments """ |
|
slic = np.s_[25:35, 10:100:5] |
|
ref = self.dset.regionref[slic] |
|
self.assertArrayEqual(self.dset[ref], self.data[slic]) |
|
|
|
@empty_regionref_xfail |
|
def test_empty_region(self): |
|
ref = self.dset.regionref[:0] |
|
out = self.dset[ref] |
|
assert out.size == 0 |
|
|
|
|
|
@empty_regionref_xfail |
|
def test_scalar_dataset(self): |
|
ds = self.f.create_dataset("scalar", data=1.0, dtype='f4') |
|
sid = h5py.h5s.create(h5py.h5s.SCALAR) |
|
|
|
|
|
sid.select_none() |
|
ref = h5py.h5r.create(ds.id, b'.', h5py.h5r.DATASET_REGION, sid) |
|
assert ds[ref] == h5py.Empty(np.dtype('f4')) |
|
|
|
|
|
sid.select_all() |
|
ref = h5py.h5r.create(ds.id, b'.', h5py.h5r.DATASET_REGION, sid) |
|
assert ds[ref] == ds[()] |
|
|
|
def test_ref_shape(self): |
|
""" Region reference shape and selection shape """ |
|
slic = np.s_[25:35, 10:100:5] |
|
ref = self.dset.regionref[slic] |
|
self.assertEqual(self.dset.regionref.shape(ref), self.dset.shape) |
|
self.assertEqual(self.dset.regionref.selection(ref), (10, 18)) |
|
|
|
|
|
class TestAstype(BaseDataset): |
|
""".astype() wrapper & context manager |
|
""" |
|
def test_astype_ctx(self): |
|
dset = self.f.create_dataset('x', (100,), dtype='i2') |
|
dset[...] = np.arange(100) |
|
|
|
with warnings.catch_warnings(record=True) as warn_rec: |
|
warnings.simplefilter("always") |
|
|
|
with dset.astype('f8'): |
|
self.assertArrayEqual(dset[...], np.arange(100, dtype='f8')) |
|
|
|
with dset.astype('f4') as f4ds: |
|
self.assertArrayEqual(f4ds[...], np.arange(100, dtype='f4')) |
|
|
|
assert [w.category for w in warn_rec] == [H5pyDeprecationWarning] * 2 |
|
|
|
def test_astype_wrapper(self): |
|
dset = self.f.create_dataset('x', (100,), dtype='i2') |
|
dset[...] = np.arange(100) |
|
arr = dset.astype('f4')[:] |
|
self.assertArrayEqual(arr, np.arange(100, dtype='f4')) |
|
|
|
|
|
def test_astype_wrapper_len(self): |
|
dset = self.f.create_dataset('x', (100,), dtype='i2') |
|
dset[...] = np.arange(100) |
|
self.assertEqual(100, len(dset.astype('f4'))) |
|
|
|
|
|
class TestScalarCompound(BaseDataset): |
|
|
|
""" |
|
Retrieval of a single field from a scalar compound dataset should |
|
strip the field info |
|
""" |
|
|
|
def test_scalar_compound(self): |
|
|
|
dt = np.dtype([('a', 'i')]) |
|
dset = self.f.create_dataset('x', (), dtype=dt) |
|
self.assertEqual(dset['a'].dtype, np.dtype('i')) |
|
|
|
|
|
class TestVlen(BaseDataset): |
|
def test_int(self): |
|
dt = h5py.vlen_dtype(int) |
|
ds = self.f.create_dataset('vlen', (4,), dtype=dt) |
|
ds[0] = np.arange(3) |
|
ds[1] = np.arange(0) |
|
ds[2] = [1, 2, 3] |
|
ds[3] = np.arange(1) |
|
self.assertArrayEqual(ds[0], np.arange(3)) |
|
self.assertArrayEqual(ds[1], np.arange(0)) |
|
self.assertArrayEqual(ds[2], np.array([1, 2, 3])) |
|
self.assertArrayEqual(ds[1], np.arange(0)) |
|
ds[0:2] = np.array([np.arange(5), np.arange(4)], dtype=object) |
|
self.assertArrayEqual(ds[0], np.arange(5)) |
|
self.assertArrayEqual(ds[1], np.arange(4)) |
|
ds[0:2] = np.array([np.arange(3), np.arange(3)]) |
|
self.assertArrayEqual(ds[0], np.arange(3)) |
|
self.assertArrayEqual(ds[1], np.arange(3)) |
|
|
|
def test_reuse_from_other(self): |
|
dt = h5py.vlen_dtype(int) |
|
ds = self.f.create_dataset('vlen', (1,), dtype=dt) |
|
self.f.create_dataset('vlen2', (1,), ds[()].dtype) |
|
|
|
def test_reuse_struct_from_other(self): |
|
dt = [('a', int), ('b', h5py.vlen_dtype(int))] |
|
ds = self.f.create_dataset('vlen', (1,), dtype=dt) |
|
fname = self.f.filename |
|
self.f.close() |
|
self.f = h5py.File(fname, 'a') |
|
self.f.create_dataset('vlen2', (1,), self.f['vlen']['b'][()].dtype) |
|
|
|
def test_convert(self): |
|
dt = h5py.vlen_dtype(int) |
|
ds = self.f.create_dataset('vlen', (3,), dtype=dt) |
|
ds[0] = np.array([1.4, 1.2]) |
|
ds[1] = np.array([1.2]) |
|
ds[2] = [1.2, 2, 3] |
|
self.assertArrayEqual(ds[0], np.array([1, 1])) |
|
self.assertArrayEqual(ds[1], np.array([1])) |
|
self.assertArrayEqual(ds[2], np.array([1, 2, 3])) |
|
ds[0:2] = np.array([[0.1, 1.1, 2.1, 3.1, 4], np.arange(4)], dtype=object) |
|
self.assertArrayEqual(ds[0], np.arange(5)) |
|
self.assertArrayEqual(ds[1], np.arange(4)) |
|
ds[0:2] = np.array([np.array([0.1, 1.2, 2.2]), |
|
np.array([0.2, 1.2, 2.2])]) |
|
self.assertArrayEqual(ds[0], np.arange(3)) |
|
self.assertArrayEqual(ds[1], np.arange(3)) |
|
|
|
def test_multidim(self): |
|
dt = h5py.vlen_dtype(int) |
|
ds = self.f.create_dataset('vlen', (2, 2), dtype=dt) |
|
ds[0, 0] = np.arange(1) |
|
ds[:, :] = np.array([[np.arange(3), np.arange(2)], |
|
[np.arange(1), np.arange(2)]], dtype=object) |
|
ds[:, :] = np.array([[np.arange(2), np.arange(2)], |
|
[np.arange(2), np.arange(2)]]) |
|
|
|
def _help_float_testing(self, np_dt, dataset_name='vlen'): |
|
""" |
|
Helper for testing various vlen numpy data types. |
|
:param np_dt: Numpy datatype to test |
|
:param dataset_name: String name of the dataset to create for testing. |
|
""" |
|
dt = h5py.vlen_dtype(np_dt) |
|
ds = self.f.create_dataset(dataset_name, (5,), dtype=dt) |
|
|
|
|
|
array_0 = np.array([1., 2., 30.], dtype=np_dt) |
|
array_1 = np.array([100.3, 200.4, 98.1, -10.5, -300.0], dtype=np_dt) |
|
|
|
|
|
array_2 = np.array([1, 2, 8], dtype=np.dtype('int32')) |
|
casted_array_2 = array_2.astype(np_dt) |
|
|
|
|
|
list_3 = [1., 2., 900., 0., -0.5] |
|
list_array_3 = np.array(list_3, dtype=np_dt) |
|
|
|
|
|
list_4 = [-1, -100, 0, 1, 9999, 70] |
|
list_array_4 = np.array(list_4, dtype=np_dt) |
|
|
|
ds[0] = array_0 |
|
ds[1] = array_1 |
|
ds[2] = array_2 |
|
ds[3] = list_3 |
|
ds[4] = list_4 |
|
|
|
self.assertArrayEqual(array_0, ds[0]) |
|
self.assertArrayEqual(array_1, ds[1]) |
|
self.assertArrayEqual(casted_array_2, ds[2]) |
|
self.assertArrayEqual(list_array_3, ds[3]) |
|
self.assertArrayEqual(list_array_4, ds[4]) |
|
|
|
|
|
list_array_3 = np.array([0.3, 2.2], dtype=np_dt) |
|
|
|
ds[0] = list_array_3[:] |
|
|
|
self.assertArrayEqual(list_array_3, ds[0]) |
|
|
|
|
|
self.f.flush() |
|
self.f.close() |
|
|
|
def test_numpy_float16(self): |
|
np_dt = np.dtype('float16') |
|
self._help_float_testing(np_dt) |
|
|
|
def test_numpy_float32(self): |
|
np_dt = np.dtype('float32') |
|
self._help_float_testing(np_dt) |
|
|
|
def test_numpy_float64_from_dtype(self): |
|
np_dt = np.dtype('float64') |
|
self._help_float_testing(np_dt) |
|
|
|
def test_numpy_float64_2(self): |
|
np_dt = np.float64 |
|
self._help_float_testing(np_dt) |
|
|
|
def test_non_contiguous_arrays(self): |
|
"""Test that non-contiguous arrays are stored correctly""" |
|
self.f.create_dataset('nc', (10,), dtype=h5py.vlen_dtype('bool')) |
|
x = np.array([True, False, True, True, False, False, False]) |
|
self.f['nc'][0] = x[::2] |
|
|
|
assert all(self.f['nc'][0] == x[::2]), f"{self.f['nc'][0]} != {x[::2]}" |
|
|
|
self.f.create_dataset('nc2', (10,), dtype=h5py.vlen_dtype('int8')) |
|
y = np.array([2, 4, 1, 5, -1, 3, 7]) |
|
self.f['nc2'][0] = y[::2] |
|
|
|
assert all(self.f['nc2'][0] == y[::2]), f"{self.f['nc2'][0]} != {y[::2]}" |
|
|
|
|
|
class TestLowOpen(BaseDataset): |
|
|
|
def test_get_access_list(self): |
|
""" Test H5Dget_access_plist """ |
|
ds = self.f.create_dataset('foo', (4,)) |
|
p_list = ds.id.get_access_plist() |
|
|
|
def test_dapl(self): |
|
""" Test the dapl keyword to h5d.open """ |
|
dapl = h5py.h5p.create(h5py.h5p.DATASET_ACCESS) |
|
dset = self.f.create_dataset('x', (100,)) |
|
del dset |
|
dsid = h5py.h5d.open(self.f.id, b'x', dapl) |
|
self.assertIsInstance(dsid, h5py.h5d.DatasetID) |
|
|
|
|
|
@ut.skipUnless(h5py.version.hdf5_version_tuple >= (1, 10, 5), |
|
"chunk info requires HDF5 >= 1.10.5") |
|
def test_get_chunk_details(): |
|
from io import BytesIO |
|
buf = BytesIO() |
|
with h5py.File(buf, 'w') as fout: |
|
fout.create_dataset('test', shape=(100, 100), chunks=(10, 10), dtype='i4') |
|
fout['test'][:] = 1 |
|
|
|
buf.seek(0) |
|
with h5py.File(buf, 'r') as fin: |
|
ds = fin['test'].id |
|
|
|
assert ds.get_num_chunks() == 100 |
|
for j in range(100): |
|
offset = tuple(np.array(np.unravel_index(j, (10, 10))) * 10) |
|
|
|
si = ds.get_chunk_info(j) |
|
assert si.chunk_offset == offset |
|
assert si.filter_mask == 0 |
|
assert si.byte_offset is not None |
|
assert si.size > 0 |
|
|
|
si = ds.get_chunk_info_by_coord((0, 0)) |
|
assert si.chunk_offset == (0, 0) |
|
assert si.filter_mask == 0 |
|
assert si.byte_offset is not None |
|
assert si.size > 0 |
|
|
|
|
|
@ut.skipUnless(h5py.version.hdf5_version_tuple >= (1, 12, 3) or |
|
(h5py.version.hdf5_version_tuple >= (1, 10, 10) and h5py.version.hdf5_version_tuple < (1, 10, 99)), |
|
"chunk iteration requires HDF5 1.10.10 and later 1.10, or 1.12.3 and later") |
|
def test_chunk_iter(): |
|
"""H5Dchunk_iter() for chunk information""" |
|
from io import BytesIO |
|
buf = BytesIO() |
|
with h5py.File(buf, 'w') as f: |
|
f.create_dataset('test', shape=(100, 100), chunks=(10, 10), dtype='i4') |
|
f['test'][:] = 1 |
|
|
|
buf.seek(0) |
|
with h5py.File(buf, 'r') as f: |
|
dsid = f['test'].id |
|
|
|
num_chunks = dsid.get_num_chunks() |
|
assert num_chunks == 100 |
|
ci = {} |
|
for j in range(num_chunks): |
|
si = dsid.get_chunk_info(j) |
|
ci[si.chunk_offset] = si |
|
|
|
def callback(chunk_info): |
|
known = ci[chunk_info.chunk_offset] |
|
assert chunk_info.chunk_offset == known.chunk_offset |
|
assert chunk_info.filter_mask == known.filter_mask |
|
assert chunk_info.byte_offset == known.byte_offset |
|
assert chunk_info.size == known.size |
|
|
|
dsid.chunk_iter(callback) |
|
|
|
|
|
def test_empty_shape(writable_file): |
|
ds = writable_file.create_dataset('empty', dtype='int32') |
|
assert ds.shape is None |
|
assert ds.maxshape is None |
|
|
|
|
|
def test_zero_storage_size(): |
|
|
|
from io import BytesIO |
|
buf = BytesIO() |
|
with h5py.File(buf, 'w') as fout: |
|
fout.create_dataset('empty', dtype='uint8') |
|
|
|
buf.seek(0) |
|
with h5py.File(buf, 'r') as fin: |
|
assert fin['empty'].chunks is None |
|
assert fin['empty'].id.get_offset() is None |
|
assert fin['empty'].id.get_storage_size() == 0 |
|
|
|
|
|
def test_python_int_uint64(writable_file): |
|
|
|
data = [np.iinfo(np.int64).max, np.iinfo(np.int64).max + 1] |
|
|
|
|
|
ds = writable_file.create_dataset('x', data=data, dtype=np.uint64) |
|
assert ds.dtype == np.dtype(np.uint64) |
|
np.testing.assert_array_equal(ds[:], np.array(data, dtype=np.uint64)) |
|
|
|
|
|
ds[:] = data |
|
np.testing.assert_array_equal(ds[:], np.array(data, dtype=np.uint64)) |
|
|
|
|
|
def test_setitem_fancy_indexing(writable_file): |
|
|
|
arr = writable_file.create_dataset('data', (5, 1000, 2), dtype=np.uint8) |
|
block = np.random.randint(255, size=(5, 3, 2)) |
|
arr[:, [0, 2, 4], ...] = block |
|
|
|
|
|
def test_vlen_spacepad(): |
|
with File(get_data_file_path("vlen_string_dset.h5")) as f: |
|
assert f["DS1"][0] == b"Parting" |
|
|
|
|
|
def test_vlen_nullterm(): |
|
with File(get_data_file_path("vlen_string_dset_utc.h5")) as f: |
|
assert f["ds1"][0] == b"2009-12-20T10:16:18.662409Z" |
|
|
|
|
|
@pytest.mark.skipif( |
|
h5py.version.hdf5_version_tuple < (1, 10, 3), |
|
reason="Appears you cannot pass an unknown filter id for HDF5 < 1.10.3" |
|
) |
|
def test_allow_unknown_filter(writable_file): |
|
|
|
fake_filter_id = 256 |
|
ds = writable_file.create_dataset( |
|
'data', shape=(10, 10), dtype=np.uint8, compression=fake_filter_id, |
|
allow_unknown_filter=True |
|
) |
|
assert str(fake_filter_id) in ds._filters |
|
|
|
|
|
def test_dset_chunk_cache(): |
|
"""Chunk cache configuration for individual datasets.""" |
|
from io import BytesIO |
|
buf = BytesIO() |
|
with h5py.File(buf, 'w') as fout: |
|
ds = fout.create_dataset( |
|
'x', shape=(10, 20), chunks=(5, 4), dtype='i4', |
|
rdcc_nbytes=2 * 1024 * 1024, rdcc_w0=0.2, rdcc_nslots=997) |
|
ds_chunk_cache = ds.id.get_access_plist().get_chunk_cache() |
|
assert fout.id.get_access_plist().get_cache()[1:] != ds_chunk_cache |
|
assert ds_chunk_cache == (997, 2 * 1024 * 1024, 0.2) |
|
|
|
buf.seek(0) |
|
with h5py.File(buf, 'r') as fin: |
|
ds = fin.require_dataset( |
|
'x', shape=(10, 20), dtype='i4', |
|
rdcc_nbytes=3 * 1024 * 1024, rdcc_w0=0.67, rdcc_nslots=709) |
|
ds_chunk_cache = ds.id.get_access_plist().get_chunk_cache() |
|
assert fin.id.get_access_plist().get_cache()[1:] != ds_chunk_cache |
|
assert ds_chunk_cache == (709, 3 * 1024 * 1024, 0.67) |
|
|
|
|
|
class TestCommutative(BaseDataset): |
|
""" |
|
Test the symmetry of operators, at least with the numpy types. |
|
Issue: https://github.com/h5py/h5py/issues/1947 |
|
""" |
|
def test_numpy_commutative(self,): |
|
""" |
|
Create a h5py dataset, extract one element convert to numpy |
|
Check that it returns symmetric response to == and != |
|
""" |
|
shape = (100,1) |
|
dset = self.f.create_dataset("test", shape, dtype=float, |
|
data=np.random.rand(*shape)) |
|
|
|
|
|
|
|
val = np.float64(dset[0]) |
|
|
|
assert np.all((val == dset) == (dset == val)) |
|
assert np.all((val != dset) == (dset != val)) |
|
|
|
|
|
|
|
delta = 0.001 |
|
nval = np.nanmax(dset)+delta |
|
|
|
assert np.all((nval == dset) == (dset == nval)) |
|
assert np.all((nval != dset) == (dset != nval)) |
|
|
|
def test_basetype_commutative(self,): |
|
""" |
|
Create a h5py dataset and check basetype compatibility. |
|
Check that operation is symmetric, even if it is potentially |
|
not meaningful. |
|
""" |
|
shape = (100,1) |
|
dset = self.f.create_dataset("test", shape, dtype=float, |
|
data=np.random.rand(*shape)) |
|
|
|
|
|
|
|
val = float(0.) |
|
assert (val == dset) == (dset == val) |
|
assert (val != dset) == (dset != val) |
|
|
|
class TestVirtualPrefix(BaseDataset): |
|
""" |
|
Test setting virtual prefix |
|
""" |
|
@ut.skipIf(version.hdf5_version_tuple < (1, 10, 2), |
|
reason = "Virtual prefix does not exist before HDF5 version 1.10.2") |
|
def test_virtual_prefix_create(self): |
|
shape = (100,1) |
|
virtual_prefix = "/path/to/virtual" |
|
dset = self.f.create_dataset("test", shape, dtype=float, |
|
data=np.random.rand(*shape), |
|
virtual_prefix = virtual_prefix) |
|
|
|
virtual_prefix_readback = pathlib.Path(dset.id.get_access_plist().get_virtual_prefix().decode()).as_posix() |
|
assert virtual_prefix_readback == virtual_prefix |
|
|
|
@ut.skipIf(version.hdf5_version_tuple < (1, 10, 2), |
|
reason = "Virtual prefix does not exist before HDF5 version 1.10.2") |
|
def test_virtual_prefix_require(self): |
|
virtual_prefix = "/path/to/virtual" |
|
dset = self.f.require_dataset('foo', (10, 3), 'f', virtual_prefix = virtual_prefix) |
|
virtual_prefix_readback = pathlib.Path(dset.id.get_access_plist().get_virtual_prefix().decode()).as_posix() |
|
self.assertEqual(virtual_prefix, virtual_prefix_readback) |
|
self.assertIsInstance(dset, Dataset) |
|
self.assertEqual(dset.shape, (10, 3)) |
|
|