|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Dataset slicing test module. |
|
|
|
Tests all supported slicing operations, including read/write and |
|
broadcasting operations. Does not test type conversion except for |
|
corner cases overlapping with slicing; for example, when selecting |
|
specific fields of a compound type. |
|
""" |
|
|
|
import numpy as np |
|
|
|
from .common import ut, TestCase |
|
|
|
import h5py |
|
from h5py import h5s, h5t, h5d |
|
from h5py import File, MultiBlockSlice |
|
|
|
class BaseSlicing(TestCase): |
|
|
|
def setUp(self): |
|
self.f = File(self.mktemp(), 'w') |
|
|
|
def tearDown(self): |
|
if self.f: |
|
self.f.close() |
|
|
|
class TestSingleElement(BaseSlicing): |
|
|
|
""" |
|
Feature: Retrieving a single element works with NumPy semantics |
|
""" |
|
|
|
def test_single_index(self): |
|
""" Single-element selection with [index] yields array scalar """ |
|
dset = self.f.create_dataset('x', (1,), dtype='i1') |
|
out = dset[0] |
|
self.assertIsInstance(out, np.int8) |
|
|
|
def test_single_null(self): |
|
""" Single-element selection with [()] yields ndarray """ |
|
dset = self.f.create_dataset('x', (1,), dtype='i1') |
|
out = dset[()] |
|
self.assertIsInstance(out, np.ndarray) |
|
self.assertEqual(out.shape, (1,)) |
|
|
|
def test_scalar_index(self): |
|
""" Slicing with [...] yields scalar ndarray """ |
|
dset = self.f.create_dataset('x', shape=(), dtype='f') |
|
out = dset[...] |
|
self.assertIsInstance(out, np.ndarray) |
|
self.assertEqual(out.shape, ()) |
|
|
|
def test_scalar_null(self): |
|
""" Slicing with [()] yields array scalar """ |
|
dset = self.f.create_dataset('x', shape=(), dtype='i1') |
|
out = dset[()] |
|
self.assertIsInstance(out, np.int8) |
|
|
|
def test_compound(self): |
|
""" Compound scalar is numpy.void, not tuple (issue 135) """ |
|
dt = np.dtype([('a','i4'),('b','f8')]) |
|
v = np.ones((4,), dtype=dt) |
|
dset = self.f.create_dataset('foo', (4,), data=v) |
|
self.assertEqual(dset[0], v[0]) |
|
self.assertIsInstance(dset[0], np.void) |
|
|
|
class TestObjectIndex(BaseSlicing): |
|
|
|
""" |
|
Feature: numpy.object_ subtypes map to real Python objects |
|
""" |
|
|
|
def test_reference(self): |
|
""" Indexing a reference dataset returns a h5py.Reference instance """ |
|
dset = self.f.create_dataset('x', (1,), dtype=h5py.ref_dtype) |
|
dset[0] = self.f.ref |
|
self.assertEqual(type(dset[0]), h5py.Reference) |
|
|
|
def test_regref(self): |
|
""" Indexing a region reference dataset returns a h5py.RegionReference |
|
""" |
|
dset1 = self.f.create_dataset('x', (10,10)) |
|
regref = dset1.regionref[...] |
|
dset2 = self.f.create_dataset('y', (1,), dtype=h5py.regionref_dtype) |
|
dset2[0] = regref |
|
self.assertEqual(type(dset2[0]), h5py.RegionReference) |
|
|
|
def test_reference_field(self): |
|
""" Compound types of which a reference is an element work right """ |
|
dt = np.dtype([('a', 'i'),('b', h5py.ref_dtype)]) |
|
|
|
dset = self.f.create_dataset('x', (1,), dtype=dt) |
|
dset[0] = (42, self.f['/'].ref) |
|
|
|
out = dset[0] |
|
self.assertEqual(type(out[1]), h5py.Reference) |
|
|
|
def test_scalar(self): |
|
""" Indexing returns a real Python object on scalar datasets """ |
|
dset = self.f.create_dataset('x', (), dtype=h5py.ref_dtype) |
|
dset[()] = self.f.ref |
|
self.assertEqual(type(dset[()]), h5py.Reference) |
|
|
|
def test_bytestr(self): |
|
""" Indexing a byte string dataset returns a real python byte string |
|
""" |
|
dset = self.f.create_dataset('x', (1,), dtype=h5py.string_dtype(encoding='ascii')) |
|
dset[0] = b"Hello there!" |
|
self.assertEqual(type(dset[0]), bytes) |
|
|
|
class TestSimpleSlicing(TestCase): |
|
|
|
""" |
|
Feature: Simple NumPy-style slices (start:stop:step) are supported. |
|
""" |
|
|
|
def setUp(self): |
|
self.f = File(self.mktemp(), 'w') |
|
self.arr = np.arange(10) |
|
self.dset = self.f.create_dataset('x', data=self.arr) |
|
|
|
def tearDown(self): |
|
if self.f: |
|
self.f.close() |
|
|
|
def test_negative_stop(self): |
|
""" Negative stop indexes work as they do in NumPy """ |
|
self.assertArrayEqual(self.dset[2:-2], self.arr[2:-2]) |
|
|
|
def test_write(self): |
|
"""Assigning to a 1D slice of a 2D dataset |
|
""" |
|
dset = self.f.create_dataset('x2', (10, 2)) |
|
|
|
x = np.zeros((10, 1)) |
|
dset[:, 0] = x[:, 0] |
|
with self.assertRaises(TypeError): |
|
dset[:, 1] = x |
|
|
|
class TestArraySlicing(BaseSlicing): |
|
|
|
""" |
|
Feature: Array types are handled appropriately |
|
""" |
|
|
|
def test_read(self): |
|
""" Read arrays tack array dimensions onto end of shape tuple """ |
|
dt = np.dtype('(3,)f8') |
|
dset = self.f.create_dataset('x',(10,),dtype=dt) |
|
self.assertEqual(dset.shape, (10,)) |
|
self.assertEqual(dset.dtype, dt) |
|
|
|
|
|
out = dset[...] |
|
self.assertEqual(out.dtype, np.dtype('f8')) |
|
self.assertEqual(out.shape, (10,3)) |
|
|
|
|
|
out = dset[0] |
|
self.assertEqual(out.dtype, np.dtype('f8')) |
|
self.assertEqual(out.shape, (3,)) |
|
|
|
|
|
out = dset[2:8:2] |
|
self.assertEqual(out.dtype, np.dtype('f8')) |
|
self.assertEqual(out.shape, (3,3)) |
|
|
|
def test_write_broadcast(self): |
|
""" Array fill from constant is not supported (issue 211). |
|
""" |
|
dt = np.dtype('(3,)i') |
|
|
|
dset = self.f.create_dataset('x', (10,), dtype=dt) |
|
|
|
with self.assertRaises(TypeError): |
|
dset[...] = 42 |
|
|
|
def test_write_element(self): |
|
""" Write a single element to the array |
|
|
|
Issue 211. |
|
""" |
|
dt = np.dtype('(3,)f8') |
|
dset = self.f.create_dataset('x', (10,), dtype=dt) |
|
|
|
data = np.array([1,2,3.0]) |
|
dset[4] = data |
|
|
|
out = dset[4] |
|
self.assertTrue(np.all(out == data)) |
|
|
|
def test_write_slices(self): |
|
""" Write slices to array type """ |
|
dt = np.dtype('(3,)i') |
|
|
|
data1 = np.ones((2,), dtype=dt) |
|
data2 = np.ones((4,5), dtype=dt) |
|
|
|
dset = self.f.create_dataset('x', (10,9,11), dtype=dt) |
|
|
|
dset[0,0,2:4] = data1 |
|
self.assertArrayEqual(dset[0,0,2:4], data1) |
|
|
|
dset[3, 1:5, 6:11] = data2 |
|
self.assertArrayEqual(dset[3, 1:5, 6:11], data2) |
|
|
|
|
|
def test_roundtrip(self): |
|
""" Read the contents of an array and write them back |
|
|
|
Issue 211. |
|
""" |
|
dt = np.dtype('(3,)f8') |
|
dset = self.f.create_dataset('x', (10,), dtype=dt) |
|
|
|
out = dset[...] |
|
dset[...] = out |
|
|
|
self.assertTrue(np.all(dset[...] == out)) |
|
|
|
|
|
class TestZeroLengthSlicing(BaseSlicing): |
|
|
|
""" |
|
Slices resulting in empty arrays |
|
""" |
|
|
|
def test_slice_zero_length_dimension(self): |
|
""" Slice a dataset with a zero in its shape vector |
|
along the zero-length dimension """ |
|
for i, shape in enumerate([(0,), (0, 3), (0, 2, 1)]): |
|
dset = self.f.create_dataset('x%d'%i, shape, dtype=int, maxshape=(None,)*len(shape)) |
|
self.assertEqual(dset.shape, shape) |
|
out = dset[...] |
|
self.assertIsInstance(out, np.ndarray) |
|
self.assertEqual(out.shape, shape) |
|
out = dset[:] |
|
self.assertIsInstance(out, np.ndarray) |
|
self.assertEqual(out.shape, shape) |
|
if len(shape) > 1: |
|
out = dset[:, :1] |
|
self.assertIsInstance(out, np.ndarray) |
|
self.assertEqual(out.shape[:2], (0, 1)) |
|
|
|
def test_slice_other_dimension(self): |
|
""" Slice a dataset with a zero in its shape vector |
|
along a non-zero-length dimension """ |
|
for i, shape in enumerate([(3, 0), (1, 2, 0), (2, 0, 1)]): |
|
dset = self.f.create_dataset('x%d'%i, shape, dtype=int, maxshape=(None,)*len(shape)) |
|
self.assertEqual(dset.shape, shape) |
|
out = dset[:1] |
|
self.assertIsInstance(out, np.ndarray) |
|
self.assertEqual(out.shape, (1,)+shape[1:]) |
|
|
|
def test_slice_of_length_zero(self): |
|
""" Get a slice of length zero from a non-empty dataset """ |
|
for i, shape in enumerate([(3,), (2, 2,), (2, 1, 5)]): |
|
dset = self.f.create_dataset('x%d'%i, data=np.zeros(shape, int), maxshape=(None,)*len(shape)) |
|
self.assertEqual(dset.shape, shape) |
|
out = dset[1:1] |
|
self.assertIsInstance(out, np.ndarray) |
|
self.assertEqual(out.shape, (0,)+shape[1:]) |
|
|
|
class TestFieldNames(BaseSlicing): |
|
|
|
""" |
|
Field names for read & write |
|
""" |
|
|
|
dt = np.dtype([('a', 'f'), ('b', 'i'), ('c', 'f4')]) |
|
data = np.ones((100,), dtype=dt) |
|
|
|
def setUp(self): |
|
BaseSlicing.setUp(self) |
|
self.dset = self.f.create_dataset('x', (100,), dtype=self.dt) |
|
self.dset[...] = self.data |
|
|
|
def test_read(self): |
|
""" Test read with field selections """ |
|
self.assertArrayEqual(self.dset['a'], self.data['a']) |
|
|
|
def test_unicode_names(self): |
|
""" Unicode field names for for read and write """ |
|
self.assertArrayEqual(self.dset['a'], self.data['a']) |
|
self.dset['a'] = 42 |
|
data = self.data.copy() |
|
data['a'] = 42 |
|
self.assertArrayEqual(self.dset['a'], data['a']) |
|
|
|
def test_write(self): |
|
""" Test write with field selections """ |
|
data2 = self.data.copy() |
|
data2['a'] *= 2 |
|
self.dset['a'] = data2 |
|
self.assertTrue(np.all(self.dset[...] == data2)) |
|
data2['b'] *= 4 |
|
self.dset['b'] = data2 |
|
self.assertTrue(np.all(self.dset[...] == data2)) |
|
data2['a'] *= 3 |
|
data2['c'] *= 3 |
|
self.dset['a','c'] = data2 |
|
self.assertTrue(np.all(self.dset[...] == data2)) |
|
|
|
def test_write_noncompound(self): |
|
""" Test write with non-compound source (single-field) """ |
|
data2 = self.data.copy() |
|
data2['b'] = 1.0 |
|
self.dset['b'] = 1.0 |
|
self.assertTrue(np.all(self.dset[...] == data2)) |
|
|
|
|
|
class TestMultiBlockSlice(BaseSlicing): |
|
|
|
def setUp(self): |
|
super().setUp() |
|
self.arr = np.arange(10) |
|
self.dset = self.f.create_dataset('x', data=self.arr) |
|
|
|
def test_default(self): |
|
|
|
mbslice = MultiBlockSlice() |
|
|
|
self.assertEqual(mbslice.indices(10), (0, 1, 10, 1)) |
|
np.testing.assert_array_equal(self.dset[mbslice], self.arr) |
|
|
|
def test_default_explicit(self): |
|
mbslice = MultiBlockSlice(start=0, count=10, stride=1, block=1) |
|
|
|
self.assertEqual(mbslice.indices(10), (0, 1, 10, 1)) |
|
np.testing.assert_array_equal(self.dset[mbslice], self.arr) |
|
|
|
def test_start(self): |
|
mbslice = MultiBlockSlice(start=4) |
|
|
|
self.assertEqual(mbslice.indices(10), (4, 1, 6, 1)) |
|
np.testing.assert_array_equal(self.dset[mbslice], np.array([4, 5, 6, 7, 8, 9])) |
|
|
|
def test_count(self): |
|
mbslice = MultiBlockSlice(count=7) |
|
|
|
self.assertEqual(mbslice.indices(10), (0, 1, 7, 1)) |
|
np.testing.assert_array_equal( |
|
self.dset[mbslice], np.array([0, 1, 2, 3, 4, 5, 6]) |
|
) |
|
|
|
def test_count_more_than_length_error(self): |
|
mbslice = MultiBlockSlice(count=11) |
|
with self.assertRaises(ValueError): |
|
mbslice.indices(10) |
|
|
|
def test_stride(self): |
|
mbslice = MultiBlockSlice(stride=2) |
|
|
|
self.assertEqual(mbslice.indices(10), (0, 2, 5, 1)) |
|
np.testing.assert_array_equal(self.dset[mbslice], np.array([0, 2, 4, 6, 8])) |
|
|
|
def test_stride_zero_error(self): |
|
with self.assertRaises(ValueError): |
|
|
|
MultiBlockSlice(stride=0, block=0).indices(10) |
|
|
|
def test_stride_block_equal(self): |
|
mbslice = MultiBlockSlice(stride=2, block=2) |
|
|
|
self.assertEqual(mbslice.indices(10), (0, 2, 5, 2)) |
|
np.testing.assert_array_equal(self.dset[mbslice], self.arr) |
|
|
|
def test_block_more_than_stride_error(self): |
|
with self.assertRaises(ValueError): |
|
MultiBlockSlice(block=3) |
|
|
|
with self.assertRaises(ValueError): |
|
MultiBlockSlice(stride=2, block=3) |
|
|
|
def test_stride_more_than_block(self): |
|
mbslice = MultiBlockSlice(stride=3, block=2) |
|
|
|
self.assertEqual(mbslice.indices(10), (0, 3, 3, 2)) |
|
np.testing.assert_array_equal(self.dset[mbslice], np.array([0, 1, 3, 4, 6, 7])) |
|
|
|
def test_block_overruns_extent_error(self): |
|
|
|
mbslice = MultiBlockSlice(start=2, count=2, stride=5, block=4) |
|
with self.assertRaises(ValueError): |
|
mbslice.indices(10) |
|
|
|
def test_fully_described(self): |
|
mbslice = MultiBlockSlice(start=1, count=2, stride=5, block=4) |
|
|
|
self.assertEqual(mbslice.indices(10), (1, 5, 2, 4)) |
|
np.testing.assert_array_equal( |
|
self.dset[mbslice], np.array([1, 2, 3, 4, 6, 7, 8, 9]) |
|
) |
|
|
|
def test_count_calculated(self): |
|
|
|
mbslice = MultiBlockSlice(start=1, stride=3, block=2) |
|
|
|
self.assertEqual(mbslice.indices(10), (1, 3, 3, 2)) |
|
np.testing.assert_array_equal(self.dset[mbslice], np.array([1, 2, 4, 5, 7, 8])) |
|
|
|
def test_zero_count_calculated_error(self): |
|
|
|
mbslice = MultiBlockSlice(start=8, stride=4, block=3) |
|
|
|
with self.assertRaises(ValueError): |
|
mbslice.indices(10) |
|
|