|
import argparse |
|
import os |
|
import subprocess |
|
|
|
import librosa |
|
import numpy as np |
|
import soundfile as sf |
|
from tqdm import tqdm |
|
|
|
from lib import dataset |
|
from lib import spec_utils |
|
|
|
|
|
if __name__ == '__main__': |
|
p = argparse.ArgumentParser() |
|
p.add_argument('--sr', '-r', type=int, default=44100) |
|
p.add_argument('--hop_length', '-l', type=int, default=1024) |
|
p.add_argument('--n_fft', '-f', type=int, default=2048) |
|
p.add_argument('--pitch', '-p', type=int, default=-1) |
|
p.add_argument('--mixtures', '-m', required=True) |
|
p.add_argument('--instruments', '-i', required=True) |
|
args = p.parse_args() |
|
|
|
input_i = 'input_i_{}.wav'.format(args.pitch) |
|
input_v = 'input_v_{}.wav'.format(args.pitch) |
|
output_i = 'output_i_{}.wav'.format(args.pitch) |
|
output_v = 'output_v_{}.wav'.format(args.pitch) |
|
cmd_i = 'soundstretch {} {} -pitch={}'.format(input_i, output_i, args.pitch) |
|
cmd_v = 'soundstretch {} {} -pitch={}'.format(input_v, output_v, args.pitch) |
|
cache_suffix = '_pitch{}.npy'.format(args.pitch) |
|
|
|
cache_dir = 'sr{}_hl{}_nf{}'.format(args.sr, args. hop_length, args.n_fft) |
|
mix_cache_dir = os.path.join(args.mixtures, cache_dir) |
|
inst_cache_dir = os.path.join(args.instruments, cache_dir) |
|
os.makedirs(mix_cache_dir, exist_ok=True) |
|
os.makedirs(inst_cache_dir, exist_ok=True) |
|
|
|
filelist = dataset.make_pair(args.mixtures, args.instruments) |
|
for mix_path, inst_path in tqdm(filelist): |
|
mix_basename = os.path.splitext(os.path.basename(mix_path))[0] |
|
mix_cache_path = os.path.join(mix_cache_dir, mix_basename + cache_suffix) |
|
|
|
inst_basename = os.path.splitext(os.path.basename(inst_path))[0] |
|
inst_cache_path = os.path.join(inst_cache_dir, inst_basename + cache_suffix) |
|
|
|
if os.path.exists(mix_cache_path) and os.path.exists(inst_cache_path): |
|
continue |
|
|
|
X, _ = librosa.load( |
|
mix_path, sr=args.sr, mono=False, dtype=np.float32, res_type='kaiser_fast') |
|
y, _ = librosa.load( |
|
inst_path, sr=args.sr, mono=False, dtype=np.float32, res_type='kaiser_fast') |
|
|
|
X, y = spec_utils.align_wave_head_and_tail(X, y, args.sr) |
|
v = X - y |
|
|
|
sf.write(input_i, y.T, args.sr) |
|
sf.write(input_v, v.T, args.sr) |
|
subprocess.call(cmd_i, stderr=subprocess.DEVNULL) |
|
subprocess.call(cmd_v, stderr=subprocess.DEVNULL) |
|
|
|
y, _ = librosa.load( |
|
output_i, sr=args.sr, mono=False, dtype=np.float32, res_type='kaiser_fast') |
|
v, _ = librosa.load( |
|
output_v, sr=args.sr, mono=False, dtype=np.float32, res_type='kaiser_fast') |
|
|
|
X = y + v |
|
|
|
spec = spec_utils.wave_to_spectrogram(X, args.hop_length, args.n_fft) |
|
np.save(mix_cache_path, spec) |
|
|
|
spec = spec_utils.wave_to_spectrogram(y, args.hop_length, args.n_fft) |
|
np.save(inst_cache_path, spec) |
|
|
|
os.remove(input_i) |
|
os.remove(input_v) |
|
os.remove(output_i) |
|
os.remove(output_v) |
|
|