import os import random import numpy as np import torch import torch.utils.data from tqdm import tqdm from vocalsplit.lib import spec_utils class VocalRemoverTrainingSet(torch.utils.data.Dataset): def __init__(self, training_set, cropsize, reduction_rate, reduction_weight, mixup_rate, mixup_alpha): self.training_set = training_set self.cropsize = cropsize self.reduction_rate = reduction_rate self.reduction_weight = reduction_weight self.mixup_rate = mixup_rate self.mixup_alpha = mixup_alpha def __len__(self): return len(self.training_set) def do_crop(self, X_path, y_path): X_mmap = np.load(X_path, mmap_mode='r') y_mmap = np.load(y_path, mmap_mode='r') start = np.random.randint(0, X_mmap.shape[2] - self.cropsize) end = start + self.cropsize X_crop = np.array(X_mmap[:, :, start:end], copy=True) y_crop = np.array(y_mmap[:, :, start:end], copy=True) return X_crop, y_crop def do_aug(self, X, y): if np.random.uniform() < self.reduction_rate: y = spec_utils.aggressively_remove_vocal(X, y, self.reduction_weight) if np.random.uniform() < 0.5: # swap channel X = X[::-1].copy() y = y[::-1].copy() if np.random.uniform() < 0.01: # inst X = y.copy() # if np.random.uniform() < 0.01: # # mono # X[:] = X.mean(axis=0, keepdims=True) # y[:] = y.mean(axis=0, keepdims=True) return X, y def do_mixup(self, X, y): idx = np.random.randint(0, len(self)) X_path, y_path, coef = self.training_set[idx] X_i, y_i = self.do_crop(X_path, y_path) X_i /= coef y_i /= coef X_i, y_i = self.do_aug(X_i, y_i) lam = np.random.beta(self.mixup_alpha, self.mixup_alpha) X = lam * X + (1 - lam) * X_i y = lam * y + (1 - lam) * y_i return X, y def __getitem__(self, idx): X_path, y_path, coef = self.training_set[idx] X, y = self.do_crop(X_path, y_path) X /= coef y /= coef X, y = self.do_aug(X, y) if np.random.uniform() < self.mixup_rate: X, y = self.do_mixup(X, y) X_mag = np.abs(X) y_mag = np.abs(y) return X_mag, y_mag class VocalRemoverValidationSet(torch.utils.data.Dataset): def __init__(self, patch_list): self.patch_list = patch_list def __len__(self): return len(self.patch_list) def __getitem__(self, idx): path = self.patch_list[idx] data = np.load(path) X, y = data['X'], data['y'] X_mag = np.abs(X) y_mag = np.abs(y) return X_mag, y_mag def make_pair(mix_dir, inst_dir): input_exts = ['.wav', '.m4a', '.mp3', '.mp4', '.flac'] X_list = sorted([ os.path.join(mix_dir, fname) for fname in os.listdir(mix_dir) if os.path.splitext(fname)[1] in input_exts ]) y_list = sorted([ os.path.join(inst_dir, fname) for fname in os.listdir(inst_dir) if os.path.splitext(fname)[1] in input_exts ]) filelist = list(zip(X_list, y_list)) return filelist def train_val_split(dataset_dir, split_mode, val_rate, val_filelist): if split_mode == 'random': filelist = make_pair( os.path.join(dataset_dir, 'mixtures'), os.path.join(dataset_dir, 'instruments') ) random.shuffle(filelist) if len(val_filelist) == 0: val_size = int(len(filelist) * val_rate) train_filelist = filelist[:-val_size] val_filelist = filelist[-val_size:] else: train_filelist = [ pair for pair in filelist if list(pair) not in val_filelist ] elif split_mode == 'subdirs': if len(val_filelist) != 0: raise ValueError('`val_filelist` option is not available with `subdirs` mode') train_filelist = make_pair( os.path.join(dataset_dir, 'training/mixtures'), os.path.join(dataset_dir, 'training/instruments') ) val_filelist = make_pair( os.path.join(dataset_dir, 'validation/mixtures'), os.path.join(dataset_dir, 'validation/instruments') ) return train_filelist, val_filelist def make_padding(width, cropsize, offset): left = offset roi_size = cropsize - offset * 2 if roi_size == 0: roi_size = cropsize right = roi_size - (width % roi_size) + left return left, right, roi_size def make_training_set(filelist, sr, hop_length, n_fft): ret = [] for X_path, y_path in tqdm(filelist): X, y, X_cache_path, y_cache_path = spec_utils.cache_or_load( X_path, y_path, sr, hop_length, n_fft ) coef = np.max([np.abs(X).max(), np.abs(y).max()]) ret.append([X_cache_path, y_cache_path, coef]) return ret def make_validation_set(filelist, cropsize, sr, hop_length, n_fft, offset): patch_list = [] patch_dir = 'cs{}_sr{}_hl{}_nf{}_of{}'.format(cropsize, sr, hop_length, n_fft, offset) os.makedirs(patch_dir, exist_ok=True) for X_path, y_path in tqdm(filelist): basename = os.path.splitext(os.path.basename(X_path))[0] X, y, _, _ = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft) coef = np.max([np.abs(X).max(), np.abs(y).max()]) X, y = X / coef, y / coef l, r, roi_size = make_padding(X.shape[2], cropsize, offset) X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant') y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant') len_dataset = int(np.ceil(X.shape[2] / roi_size)) for j in range(len_dataset): outpath = os.path.join(patch_dir, '{}_p{}.npz'.format(basename, j)) start = j * roi_size if not os.path.exists(outpath): np.savez( outpath, X=X_pad[:, :, start:start + cropsize], y=y_pad[:, :, start:start + cropsize] ) patch_list.append(outpath) return patch_list def get_oracle_data(X, y, oracle_loss, oracle_rate, oracle_drop_rate): k = int(len(X) * oracle_rate * (1 / (1 - oracle_drop_rate))) n = int(len(X) * oracle_rate) indices = np.argsort(oracle_loss)[::-1][:k] indices = np.random.choice(indices, n, replace=False) oracle_X = X[indices].copy() oracle_y = y[indices].copy() return oracle_X, oracle_y, indices if __name__ == "__main__": import sys import utils mix_dir = sys.argv[1] inst_dir = sys.argv[2] outdir = sys.argv[3] os.makedirs(outdir, exist_ok=True) filelist = make_pair(mix_dir, inst_dir) for mix_path, inst_path in tqdm(filelist): mix_basename = os.path.splitext(os.path.basename(mix_path))[0] X_spec, y_spec, _, _ = spec_utils.cache_or_load( mix_path, inst_path, 44100, 1024, 2048 ) X_mag = np.abs(X_spec) y_mag = np.abs(y_spec) v_mag = X_mag - y_mag v_mag *= v_mag > y_mag outpath = '{}/{}_Vocal.jpg'.format(outdir, mix_basename) v_image = spec_utils.spectrogram_to_image(v_mag) utils.imwrite(outpath, v_image)